

A Practical Review of IBIS DDR5 Enhancements

Douglas Burns, SI-Clarity LLC Pegah Alavi, Keysight Technologies DesignCon2024 Hybrid IBIS Summit Santa Clara, California February 2, 2024

SPEAKERS

Douglas Burns

Principal Consultant, SI-Clarity dburns@si-clarity.com

Douglas Burns is a Principal Consultant and founder of SI-Clarity LLC. He has worked in ASIC design, Package Design, PCB design of Memory and Serial Links, and the development of IBIS-AMI models. Doug's current focus is on solving critical Signal Integrity and Power Integrity problems, accelerating customer analysis, and providing training and mentorship to engineering teams.

Pegah Alavi

Solutions Engineer, Keysight Technologies pegah_alavi@keysight.com | @Keysight

Pegah Alavi is a Senior Applications Engineer at Keysight Technologies, where she focuses on Signal Integrity and High-Speed Digital Systems and Applications. Pegah is focusing on various high speed digital standards which include DDR, PCIe, USB, and UCIe to name a few. Before joining Keysight Technologies, Pegah worked on system level modeling of analog and mixed signal circuits to best predict the overall systems performance and accurately represent each component.

Agenda

- Introduction
 - Memory Performance
 - IBIS and IBIS-AMI Brief Overview
 - DDR5 Overview
- New IBIS-AMI Features for DDR Analysis
 - DC Offset
 - DLL Function Programmability
 - Clock- Data Pin Relationship
 - Clock Forwarding
 - Statistical Back Channel
- DDR5 Equalization Modeled In IBIS-AMI
- Summary

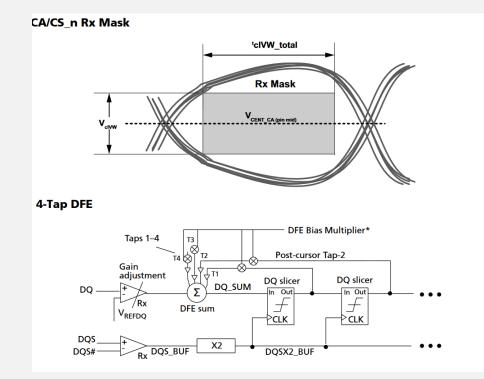
Introduction: Memory Performance

- Memory Evolution for the Past two Decades
 - DDR2: 2003: 533 → 800 MTS
 - DDR3: 2007: 1066 → 1600 MTS
 - DDR4: 2014: 2133 → 4800 MTS
 - Each generation built on:
 - Improved Memory Architectures
 - Signaling and termination Modifications
 - DDR5: 2021: 3200 → 8400 MTS
 - Improved Memory Architectures
 - Emphasis on signal processing
 - FFE, DFE

2003 200		07 2014 20)21
	DDR2 1.8V DQ ODT SSTL IO	DDR3 1.5V DQ ODT SSTL IO	DDR4 1.2V DQ ODT Pseudo Open-Drain IO	DDR5 1.1V CA & DQ ODT Pseudo Open- Drain IO

Introduction: IBIS and IBIS-AMI Overview

• IBIS


- Behavioral Modeling Standard
- Created in 1993
- Improves Simulation speed
- Protects IO IP
- IBIS-AMI
 - Introduces Algorithmic Modeling
 - Complex modeling of pre driver capabilities
 - FFE, DFE, CTLE, etc.
 - Supports Channel Simulation for LTI models
 - Statistical (LTI Models)
 - Time Domain (LTI & Non LTI Models)

IBIS
IBIS
(I/O Buffer Information Specification)
Version 7.2
Ratified January 27, 2023
© IBIS Open Forum 2023

Introduction: DDR5 Overview

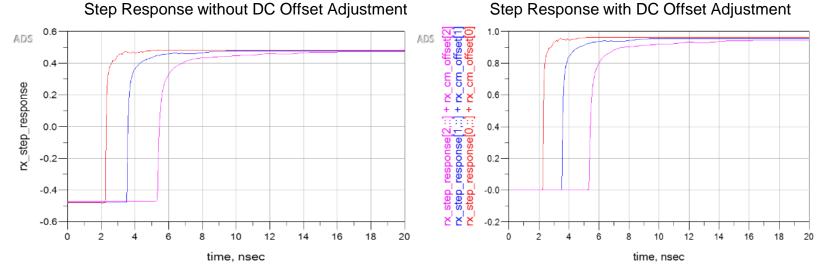
Improvements over DDR4

- Increase Operating Rates: 3200MTS to 8400MTS
 - $2x \rightarrow 3x$ improvement in Bandwidth
- Address/Command
 - Clocked on both edges
 - Pseudo Open Drain drivers, ODT, and Floating Vref
 - Mask based requirements (no longer Setup/Hold)
- DQ
 - RX contains 4 tap DFE
 - Controllers can support additional EQ capabilities (FFE, CTLE)
- VDD reduced to 1.1V

Pictures from Micron product Datasheet: : ddr5_sdram_core.pdf - Rev. B 09/2021 EN

IBIS-AMI and DDR5

- Data Rates are increasing
 - Equalization used in DDR5
- IBIS alone no longer sufficient
 - Equalization blocks must be modeled
- IBIS-AMI Models, then and now
- The journey begins...

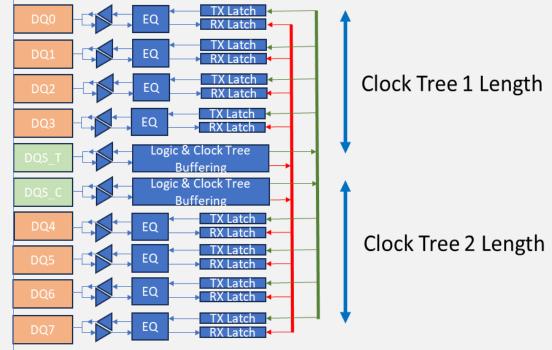

New IBIS-AMI Modeling Features: DC Offset: IBIS BIRD 197

• IBIS 7.0 and earlier

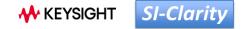
- Original IBIS-AMI meant for Differential Signals
- Single Ended signals: Common Mode voltage ignored
- Ignoring Common mode hinders modeling of Voltage Level effects.
 - Non Linearities
 - Saturation ٠

• DC Offset

- New AMI Reserved Parameter
- Parameter allows reconstruction of waveform
- Models support of non-linearities in the Data Path
 - Saturation
 - Gain •
 - CTLE Response •
 - DFE filter Response •



Step Response with DC Offset Adjustment


DLL Function Programmability: IBIS BIRD 207

- Allows programing IBIS-AMI model functionality based upon IBIS component and Signal Name
- Allows capture of skews based upon chip implementation
 - Allows programming IP based upon IC utilization
- Capability Enhances
 - Per bit clock delay: More accurate clock distribution skew definition
 - Improved DFE clocking and Data capture
- Implementation
 - IBIS-AMI Reserved Keyword

```
(Component_Name (Usage In) (Type String) (Value "placeholder")
  (Description "The name of the instantiated IBIS Component")
)
(Signal_Name (Usage In) (Type String) (Value "placeholder")
  (Description "The name of the instantiated IBIS Pin's
    signal_name sub-parameter")
```


Clock distribution (Red) vs DQ bit position (Green)

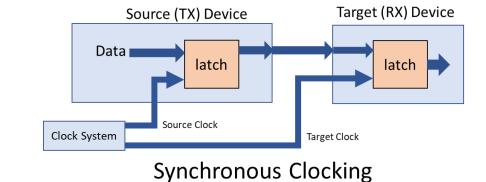
Clock-Data Pin Relationship: IBIS BIRD 208

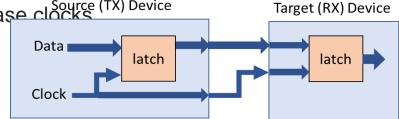
- DDR interfaces utilize multiple DQS/DQ groups
- Feature defines specific DQS/CK to DQ/Address groups
 - Allows Multi-Byte simulation with correct Clock/Data information
- Implementation
 - IBIS-AMI Reserved Keyword
 - Defines the Clock pin (CK, DQS) and an associated Address/DQ bit

[Clock]	Pins]	clocked_pins relationship
A1	B1	Unspecified Data pin B1 uses clock information from Pin A1
A2	B2	Unspecified Data pin B2 uses clock information from Pin A2
A3	B3	Unspecified
A3	B4	Unspecified Pins B3, B4, B5 use clock information from A3
A3	B5	Unspecified case-sensitive entry

Memory Clocking Methods

Clocks used transfer information between sets of Registers

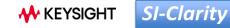

- 2 Prevalent Clocking Schemes
 - Synchronous Clocking
 - Source Synchronous Clocking


Synchronous Clocking

Clock source drives data source and target devices with individual in-phase clocks

Source Synchronous Clocking

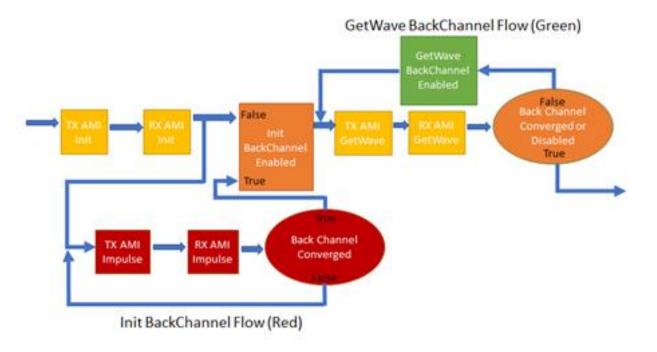
- Also Called Clock Forwarding
- Source device drives both Data and Clock to target device


Source Synchronous Clocking

Clock Forwarding Flow: IBIS Bird 209

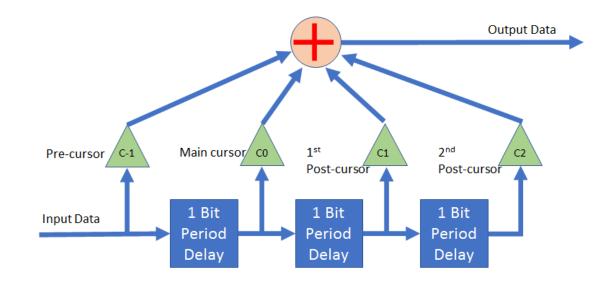
- Serial interfaces
 - Embed clock in the data stream between devices, thus IBIS-AMI models have only 1 input or Output
 - RX model uses a CDR (Clock Data Recovery) circuit to capture local clock at receiver.
 - Supported by IBIS-AMI as of IBIS Version 5.0
- DDR interfaces
 - Use Source Synchronous (Clock Forwarded) interfaces
 - Requires IBIS-AMI Model to support two inputs (Clock and Data)
 - Unsupported capability before IBIS version 7.1

- Implementation
 - Reserved Parameter: RX_Use_Clock_Input
 - Informs simulator to utilize clock data from Clock_RX_AMI_GetWave and provide it to the Data_RX_AMI_GetWave function
- Advantages
 - Models have access to the true External clock information
 - o Clock Position, Slew rate, non-linearities
 - Can model Phase shifts between Clock and Data
 - More accurate DFE analysis
 - Supports Training



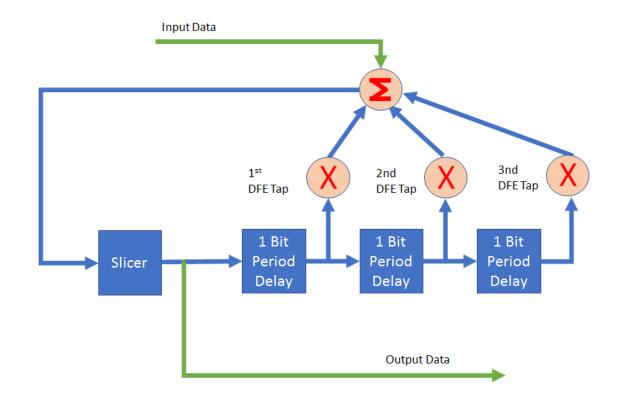
12

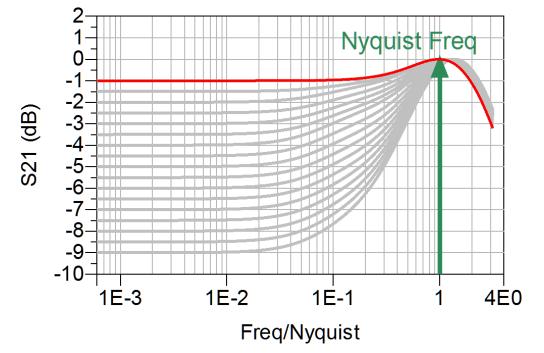
12


Statistical Back Channel: IBIS BIRD 215

- Back Channel is a model and simulator capability that allows optimization of both the RX and TX model equalization
- BIRD 215 Extends Back Channel operation to Statistical analysis
- For DDR, the controller trains the Memory TX and RX remotely
- Training Metrics: Eye Height, Eye Width, Eye Area all at a specific BER
- New IBIS-AMI Keywords:
 - AMI_Impulse
 - TX & RX
 - Variable iterated until channel settings converged
 - BCI_Training_Model
 - Impulse, Getwave, Both

DDR5 Equalization: TX FFE


- DDR5 Memory will not contain TX FFE
- DDR5 Memory Controllers are expected to have FFE
- TX FFE Reduces ISI contribution at the Receiver device
 - Helps Maximize EYE characteristics for Memory Writes
- Figure depicts 4 TAP FFE


DDR5 Equalization: RX DFE

- DDR5 Memory will use RX DFE for Writes
- DDR5 Memory Controllers will use RX DFE for Reads
- DFE is defined as 4 Taps
- Rational For inclusion
 - Higher bandwidth memory increases ISI on signals
 - Settings set by Memory Controller
 - Defined by Simulation
 - Memory Training
- Figure depicts 3 TAP DFE

RX CTLE: Why Not Included

- Used to boost High Frequency Spectrum of a signal at the receiver
- CTLE most effective on Higher Loss Channels
- Memory Channels at 4800MTS are generally short (~5 inches) so loss is not the dominant factor
- As speeds increase to 8000MTS, CTLE's may become more useful
- DDR5 specification makes no mention about Memory Controller equalization type. Thus, CTLE's in Memory Controllers may be seen in future DDR5 implementations

CTLE Response vs. (Freq/Nyquist)

 Figure depicts a representative CTLE transfer function.

Summary

• Before the inclusion of the new capabilities of:

- DC Offset, DLL Function Programmability, Clock-Data Pin Relationship, and Clock Forwarding BIRDs, Accurate modeling of the CK/DQS to Command_Address/DQ relationship was impossible.
- In DDR4, DQS/DQ variations could not be simulated, thereby requiring a guard banded EYE mask to account for skews and non-linear effects.
- DDR5 speeds require more precision in the analysis
- These new features along with improved Equalization capabilities in the devices provide the Improvement for next generation designs.

SI-Clarity

Thank you

QUESTIONS?

DesignCon2024 Hybrid IBIS Summit February 2, 2024 A Practical Review of IBIS DDR5 Enhancements