Add Support of Transient Analysis in SPIM: Update

SPIM = Streamlined Power Integrity Model

Kinger Cai (Arm)

Chi-te Chen (Intel)

Kar Leong Lee (AMD)

Zhiping Yang

Information Classification: General

Ji Zheng (Aurora-system)

VCB Automation

JAN. 28–30, 2025

#DesignCon

Hybrid IBIS Summit

DesignCon 2025

Santa Clara, CA

January 31, 2025

Speaker

Kinger Cai

Sr. Principal Engineer, Arm Kinger.Cai@Arm.com

Kinger is Sr. PE driving platform electrical arch. design & val., and industry Power & Signal Integrity standards & EDA tools evolution, in Solution Engineering Group in Arm. Kinger was a Principal Engineer/Director, in Client Computing Group in Intel, where he led cross-functional teams in driving AI PC coherent architecture strategies across mobile & client platforms and overseen design & sign-off of numerous SoCs spanning media, mobile, client, discrete GPU, & CPU servers.

Kinger earned his Ph. D from Shanghai Jiao Tong University in 2001 and MBA degree from W.P. Carey business school in ASU in 2008.

#DesignCon

(informa markets

2

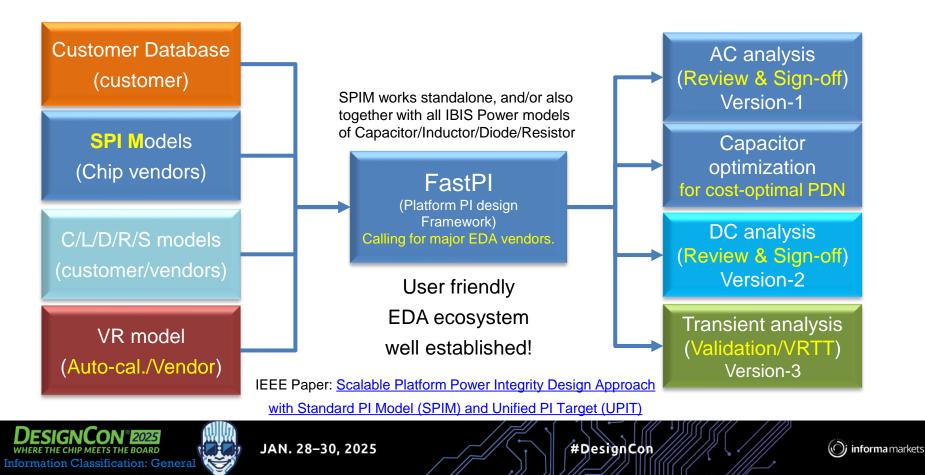
Kinger has been focusing on signal & power integrity domains for 20+ years. Kinger holds 14 granted patents, and published 30+ papers.

JAN. 28–30, 2025

SPIM Status Quo & Expansion

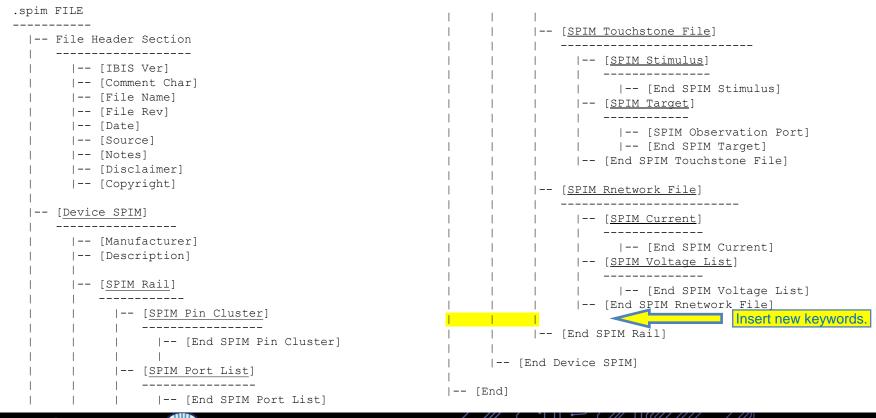
- Supports in BIRD223.1, approved in Nov. 2023
 - AC impedance, with [SPIM Touchstone File] and [SPIM Target]
 - DC analysis, with [SPIM Rnetwork File], [SPIM Current] and [SPIM Voltage List]
- Add Support for Transient analysis
 - Strongly desired by some PI designers, though it is indeed nice to have
 - "Add [SPIM icct File], and its generation & application', is updated to
 - "Add [SPIM Transient Current File], and its generation & application"
 - The existing [SPIM Current] only refers to DC current, for power DC analysis
 - Add [SPIM Transient Target] for Peak-to-Peak noise Vpp, Vmin and Vmax

<u>SPIM</u> - Streamlined Power Integrity Model, approved by IBIS Open Forum in Nov. 2023, will be included in IBIS 8.0 in 2025 <u>CVRM</u> - Compact Voltage Regulator Model, published in 2021 IEEE International Joint EMC/SI/PI and EMC Europe Symposium FastPI - Fidelity (AC/DC/Transient) Assessment System-level Technology/Tool of Power Integrity



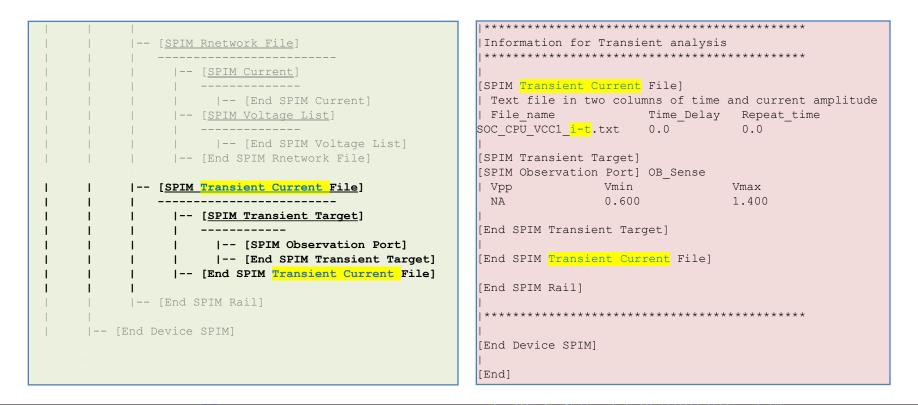
FastPI (Platform PI Arch. with SPIM) Roadmap

FastPI Roadmap with SPIM


 Internal alpha release Internal beta release 	 1st Promoted in Cadence session DesignCon Presented in IEEE EMC+ SIPI 	 PowerDC awareness SPIM Promoted in Ansys booth in DesignCon 	 FastPI CVRM- RL/FB auto-calc. FastPI Call Cadence Sigrity PowerSI/DC 	 Workshop of FastPl upon SPIM in IEEE sym. EMC+SIPI FastPl further development w/ Sigrity collaboration
 SPIM arch. Engagement With Cadence 	customers: • Aurora-S	Iwave DC, and F n IEEE Optimizati Aurora Sy	PDN got appre- ion in IBIS Ope	oved by supports en Transient

JAN. 28–30, 2025

Tree Structure of .spim FILE (Defined in BIRD223.1)

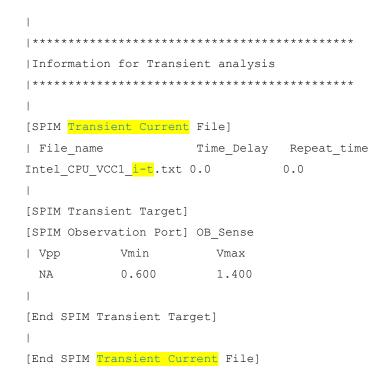

#DesignCon

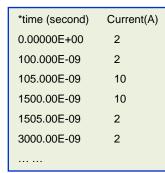
(informa markets

DESIGNCON® 2025 WHERE THE CHIP MEETS THE BOARD Information Classification: General

JAN. 28–30, 2025

.spim FILE Tree Structure Implication & Example




JAN. 28–30, 2025

Example .spim FILE -Supports Transient Analysis

Intel_CPU_VCC1_i-t.txt

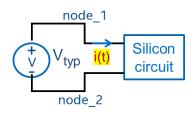
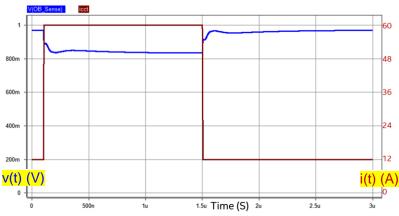




Fig.1 i(t) generation

DESIGNCON® 2025 WHERE THE CHIP MEETS THE BOARD Information Classification: General

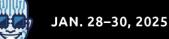
SPIM Transient Analysis Setup

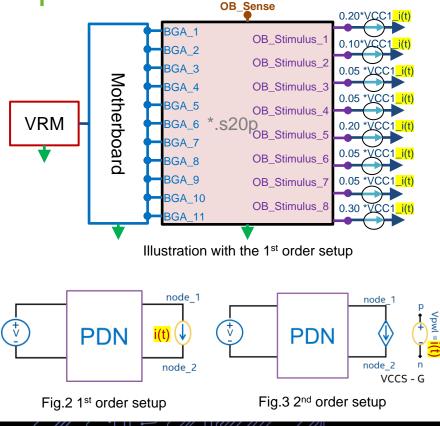
[ODTM Ot immiliant]

SOC_CPU_VCC1_i-t.txt

*******	Current(A)	1	[SPIM Stimulus]		
*time (second)	Current(A)		OB_Stimulus	Weighting	
0.00000E+00	2		OB_Stimulus_1	0.20	
100.000E-09	2		OB_Stimulus_2	0.10	
105.000E-09	10		OB_Stimulus_3	0.05	
1500.00E-09	10		OB_Stimulus_4	0.05	
1505.00E-09	2		OB_Stimulus_5	0.20	
3000.00E-09	2		OB_Stimulus_6	0.05	
3000.00E-09	2		OB_Stimulus_7	0.05	
			OB_Stimulus_8	0.30	
			[End SPIM Stimulus]		

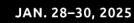
- i(t) profile under typical voltage directly at circuit node is shown in Fig.1.
- i(t) might specify time delay or repeat time, with default values of 0.
- In Power Integrity transient simulation with an actual power delivery network (PDN), the i(t) profile shall be connected as shown by Fig.3 through G element with the 2nd Polynomial function for accuracy, other than the 1st order connection as shown in Fig. 2 for efficient analysis.


* For example,


*.SUBCKT VCC1_i-t node1 node2 V_{typ}='1.0'

*Gpoly node1 node2 POLY(2) node1 node2 p n 0 0 0 0 '1/V_typ $\,$

****VCCS i12 = 0+0*V₁₂+0*Vpn+0*V12*V12+'1/V_{typ}'*V₁₂



Next Steps

- Review and revise this proposal through IBIS-ATM
 - Obtain EDA vendors to support Transient Analysis in SPIM
 - Obtain chip vendors to support Transient Analysis in SPIM
 - Obtain platform designers to support Transient Analysis in SPIM
- Submit BIRD of "Add Support of Transient Analysis in SPIM"
- Get approval of the BIRD of the same in IBIS Open Forum
- Integrate the BIRD of the same into upcoming IBIS Version release

Thank you!

QUESTIONS?

Kinger Cai E-mail: Kinger.Cai@arm.com Webpage: <u>FastPI-SPIM</u>

