The Case Study of Board Simulation

Atsuji Ito ito.atsuji@jp.panasonic.com
Matsushita Electric Industrial Co., Ltd.
(Panasonic)
Panasonic digital appliance

Digital Appliance of Panasonic

http://panasonic.jp/
AGENDA

1. The Status of JEITA EDA-WG
2. The Case Study of Board Simulation in Panasonic
3. The Issues of Board Simulation
4. Proposal to the IBIS-WG

Jan.27.2003
The Status of JEITA EDA-WG

JEITA is developing "EDA Standard Dictionary"

- Model circuit diagram, subcircuit node information, characteristics graph, verified simulator, ...
The Status of JEITA EDA-WG

Purpose of the "EDA Standard Dictionary"
- One category of ECALS dictionary (for EDI)
- Useful information for the components selection
- In order to perform simulation smoothly

EDA Standard Dict. → CAD tools → Simulator

Property → Simulation Model

.property_translation_byCadastroInterface
"EDA Standard Dictionary" is in a verification stage

- KYOCERA, Murata Manufacturing, TDK provided sample dictionaries
- Appliance maker evaluated and verified those dictionaries
- Feedback from appliance maker will be discussed at the EDA-WG
The Status of JEITA EDA-WG

"EDA Standard Dictionary" Development Schedule

- ECALS dict.
- EDA dict.
- Verification of the Property
- Discussion about verification feedback
- Confirmation
- Jan. 4.1 release
- Feb. Ver. 4.2 release
- Mar. or
- Apr. Ver. 5.1 release
- May
- June
- July
- Nov.

Jan. 27, 2003
Agenda

- The Status of JEITA EDA-WG
- The Case Study of Board Simulation in Panasonic
- The Issues of Board Simulation
- Proposal to the IBIS-WG
Using Board Simulation for the Digital HDTV design

- **Aim:** Improvement of the picture quality
 Reduction of trial design
 Cost down

- **Approach:**
 - Direct connection of the digital picture stream data between the digital boards
 - Remove DAC/ADC from the board to board connection
 - Placement and route optimization of the LSI and RAMs
 - Smaller area, reduction of the trial
 - Improvement of the LSI

(http://panasonic.jp/tv/products/hi_vision/feature/picture.html)
The Case Study of Board Simulation

Summary of the simulation(1)
– Direct connection of the digital picture stream data

1. Extraction and Evaluation of the connector model
 - Extraction of the SPICE model
 - Evaluation of the design condition (trace length, impedance, series resistor, ...)
 - Crosstalk (connector pin assignment)

2. Floor Plan simulation by SPICE, IBIS

3. Evaluation of the simulation results
 - Evaluation of the accuracy
 - Power/GND Analysis

Next challenge

Jan.27.2003
Summary of the simulation (2)

- Placement and route optimization of the LSI and RAMs

- Optimization of the trace impedance
- Examination of the driver abilities
- Termination
- Crosstalk
- Signal Integrity

Expansion of the Rambus rules and make Panasonic rules

- 4 layers Rambus
- 6 layers smaller area (Achieve 60%)
Agenda

- The Status of JEITA EDA-WG
- The Case Study of Board Simulation in Panasonic
- The Issues of Board Simulation
- Proposal to the IBIS-WG
Background and issues

- Transient analysis is useful for the digital appliance
 - SI simulator or SPICE is useful
- S-parameter model is often supplied for High frequency (RF) components

Higher frequency digital = Using RF components

Time domain \(\xrightarrow{\times} \) Frequency domain

Freq. Domain model is not useful!
The Issues of Board Simulation

Approaches ... 2 types of approaches

− Using RF simulator
 ○ • S-parameter model can be used directly
 △ • Time domain module is often option (i.e. more cost)
 ✗ • IBIS, SPICE models cannot be used for ICs

− Translation S-parameter model to SPICE model
 ○ • Simulator can be used as it is (i.e. no more cost)
 ? • Translation accuracy Evaluation this time!
The Issues of Board Simulation

Description of the translation

- Translation S-parameter to SPICE model
 - Using BroadBand Spice (Sigrity)

Read and check S-parameter → Extraction → Result Check

- Format checking
- Calculate DC value
- Choose types of export model
- Check waveforms
- Re-fitting if necessary

Execution of the extraction

Jan.27.2003
The Issues of Board Simulation

Extraction result (1)

Very good fitting result!
The Issues of Board Simulation

Refinement example

Partial refinement is useful
(But need more study)
HSPICE native format

* This is the subcircuit netlist generated by Broadband SPICE v1.0
* Port Number: 2.
* HSPICE compatible

```plaintext
.subckt L_Sample 1 2 ref
Rd1_1 3 ref 50
Rd1_2 4 ref 1
Vd1 1 3 0
F1 ref 4 Vd1 1.0
G1 ref 4 1 ref 0.02
Rd2_1 5 ref 50
Rd2_2 6 ref 1
Vd2 2 5 0
F2 ref 6 Vd2 1.0
G2 ref 6 2 ref 0.02

G3 ref 3 LAPLACE 4 ref
+ -4.21949495336101296e+016
+ -7.6924500349367864e+005
+ /
+ 8.0538254790796067e+019
+ 1.1053698816035342e+009
+ 1
```

General SPICE format

* This is the subcircuit netlist generated by Broadband SPICE v1.0
* Port Number: 2.
* SPICE compatible

```plaintext
.subckt L_Sample 1 2 ref
Rd1_1 3 ref 50
Rd1_2 4 ref 1

L2_3_0 nl_1_2 nl_1_par0 2.61967344419533906e-008
C2_3_0 nl_1_par0 nl_1_0 4.7396975379644448e-013
R2_3_0 nl_1_par0 nl_1_0 1.9087178929704005e+003
L1_3_0 pl_1_2 pl_1_ser0 2.6735500391528587e+008
C1_3_0 pl_1_ser0 pl_1_ser0 4.644184516260152e-013
R1_3_0 pl_1_ser0 pl_1_0 2.9552616902395183e+001

L2_3_1 nl_1_2 nl_1_par1 2.4621677645809129e-007
C2_3_1 nl_1_par1 nl_1_0 6.6348538919814883e-014
R2_3_1 nl_1_par1 nl_1_0 4.8138425989128831e+004
L1_3_1 pl_1_2 pl_1_ser1 2.279066127104553e+007
C1_3_1 pl_1_ser1 pl_1_ser1 7.1679023177516205e-014
R1_3_1 pl_1_ser1 pl_1_0 7.1356522526650399e+001
```
Wrap up

- S-parameter model can be applied for time domain simulation

Expansion of the simulation case

- Examination of the accuracy would be necessary
 - S-parameter extracted conditions (frequency range, …)
 - Theoretical limitation
 - Characteristics of the components
The Case Study of Board Simulation

Next Step

- Expansion of the Model Extraction Environment
 - Although semiconductor component would be difficult, we would like to increase more types of passive components

- Construction of the simulation environment which can handle various model format
 - 1st step: Model translation … Simulate anyway!
 - 2nd step: More accuracy
Agenda

- The Status of JEITA EDA-WG
- The Case Study of Board Simulation in Panasonic
- The Issues of Board Simulation
- Proposal to the IBIS-WG
Requirement to the models (more accuracy)

- More useful 'variation' parameters
 - Min/Max is not for useful because those conditions are not likely on the board.
 - Practical 'variation' conditions, range (number of condition, e.g. typ1, typ2, or 10degree, 25degree, 40degree, 80degree, ...) would be necessary
 - 'variation' parameter of each production lot would be useful
Proposal to the IBIS-WG

Co-operation between IBIS-WG and JEITA EDA-WG to improve board simulation environment
- IBIS-WG: LSI, Package, module model accuracy
- JEITA EDA-WG: Feedback board simulation study result