IBIS Summit, DesignCon, January 31, 2014, Santa Clara, CA

Arpad Muranyi, Mentor Graphics Corporation
Ambrish Varma, Cadence Design Systems

IBIS Package Modeling Proposal with External Circuit
Introduction

- The existing package modeling features in the IBIS specification are way outdated and desperately need improvements.
- Several proposals have been submitted in recent years and are currently being evaluated/discussed in the ATM Task Group:
 - BIRD 125.1 Make IBIS-ISS Available for Package Modeling
 - BIRD 145.3 Cascading IBIS I/O buffers with [External Circuit]s
 - BIRD 163 Instantiating and Connecting [External Circuit] Package Models with [Circuit Call]
 - BIRD 164 Allowing Package Models to be defined in [External Circuit]
 - BIRD 165 Parameter Passing Improvements for [External Circuit]s
 - BIRD ??? SiSoft’s EBD/EMD proposal
 - BIRD ??? SiSoft’s package modeling proposal

- This presentation will focus on BIRDs 163-164 to familiarize the audience with one of the latest (and greatest 😊) proposals.
The basic idea

- The main idea is to make use of the [External Circuit] keyword for package modeling.
- [External Circuit] was available for on-die interconnect modeling since its introduction in IBIS v4.1 (January 2004).
- There is practically no difference between an on-die interconnect and a package model, so why not use [External Circuit] for both?
Why is [External Circuit] not popular?

- [External Circuit] existed in the IBIS specification for ten years, yet it hasn’t been widely used so far

Why?

- Currently, [External Circuit] cannot be cascaded with [Model]
 - if someone wanted to model an on-die interconnect with [External Circuit] today, they would also need to use an [External Circuit] model for the buffer
- But buffer modeling in [External Circuit] is a challenging task
 - need to use Verilog-A(MS), VHDL-A(MS) or Berkeley-SPICE
- Berkeley-SPICE does not support T-line or S-parameter models
- Consequently, [External Circuit] is not very useful in real life as it stands in the current IBIS specification
Major improvements in IBIS v6.0

- IBIS-ISS was added as a new language option to [External Circuit] (and [External Model]) in IBIS v6.0 (September 2013)
 - IBIS-ISS offers many useful capabilities which were previously not available
 - W-element, S-parameter, etc...

- IBIS v6.0 also introduced parameter passing into [External Circuit] (and [External Model])
The last obstacle

There is nothing in the IBIS specification that prevents [External Circuit] from being used for package modeling, other than a small statement in Table 11 (pg. 90)

— “References enhanced descriptions of structures on the die, including digital and/or analog, active and/or passive circuits”

The IBIS specification doesn’t allow [Model] and [External Circuit] to be cascaded

— most people would like to keep using [Model] for buffers
— but there is a great need for on-die interconnect and improved package modeling in IBIS

BIRD 145 proposed a method to cascade [Model] with [External Circuit]

— requires a [Model Call] keyword for every single instance of a [Model], making .ibs files potentially very large
The purpose of BIRD 165

- BIRD 165 proposes to extend the parameter passing mechanism from [External Circuit] to [Circuit Call]
 - same syntax as in IBIS v6.0 for [External Circuit], except it can be placed under [Circuit Call] as well

- This would allow independent parameter values to be passed into each instance of the same [External Circuit]

- It is not directly related to BIRDs 163 and 164, but it improves the flexibility of package and on-die interconnect modeling by allowing independent parameter values to be passed into the different instances of the same IBIS-ISS package and on-die interconnect models
BIRD 164 proposes to change the statement in Table 11 (pg. 90) so that [External Circuit]s wouldn’t be limited to describe only “structures on the die”

change:

— “References enhanced descriptions of structures on the die, including digital and/or analog, active and/or passive circuits”

to:

— “References enhanced descriptions of structures on the die or package including digital and/or analog, active and/or passive circuits”

In addition, it proposes a subparameter for [External Circuit] to be able mark an [External Circuit] as a package model

— When this subparameter is present, the package model using [External Circuit] will supersede any other package model definition for the component
The purpose of BIRD 163

- BIRD 163 deals with instantiating [External Circuit] package models, and proposes new syntax and rules for connecting any [External Circuit] instances to each other or to buffer models described by the [Model] keyword.
- Note that the [Model] instantiation from the [Pin] keyword is not changed in this proposal.
- Also, nothing is changed for [External Model]s inside [Model].
- BIRD 163 is fairly big because Section 6.3 needs to be modified is numerous places, but the concept in the proposal is relatively simple and straightforward.
How does the proposal work?

<table>
<thead>
<tr>
<th>Pin</th>
<th>signal_name</th>
<th>model_name</th>
<th>R_pin</th>
<th>L_pin</th>
<th>C_pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vcc1</td>
<td>POWER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Vss1</td>
<td>GND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Buffer_D</td>
<td>MyBufferModel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Buffer_E</td>
<td>MyBufferModel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Vcc2</td>
<td>POWER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Vss2</td>
<td>GND</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
Adding an on-die interconnect model

[Model] MyBufferModel
Model_type I/O

[Pin] signal_name model_name R_pin L_pin C_pin
5 Buffer_E MyBufferModel 10 Vcc2 POWER
20 Vss2 GND
...
[Node Declarations] | Must appear before [Circuit Call]
a b c

**
| Instantiating external circuit PKG
| [Circuit call] PKG
| [External Circuit] PKG
| Port_map pin10 10 | Connection to pin 10
| Port_map pin5 5 | Connection to pin 5
| Port_map pin20 20 | Connection to pin 20
| Port_map pad20 c | Connection to explicit pad c
| Port_map pad5 b | Connection to explicit pad b
| Port_map pad10 a | Connection to explicit pad a
[End circuit call]

**
| Instantiating external circuit DIE
| [Circuit call] DIE
| Port_map pad10 a | Connection to explicit pad a
| Port_map pad5 b | Connection to explicit pad b
| Port_map pad20 c | Connection to explicit pad c
| Port_map gc5 gcref:5 | to A_pcref on [Model] of pin 5
| Port_map pd5 puref:5 | to A_puref on [Model] of pin 5
| Port_map sig5 signal:5 | to A_signal on [Model] of pin 5
| Port_map pd5 padref:5 | to A_pdref on [Model] of pin 5
| Port_map pc5 gcref:5 | to A_gcref on [Model] of pin 5
[End circuit call]

**
Thank you

Questions?