IBIS-AMI Modeling and Simulation of DDR5 Systems

Fangyi Rao, Hee-Soo Lee and Jing-Tao Liu, Keysight
Wendem Beyene, Intel
DDR5 Highlights

- Data rate is increased to 3200-6400 MT/s in DDR5, resulting in higher ISI
- Equalizations including CTLE and DFE are utilized in memory controller and DRAM to mitigate ISI
- Timing and voltage margins are specified at extremely low BER. Jitter and noise becomes critical factors.
- Millions of bits are required to reliably estimate margins
- Solution: extend AMI methodology from differential signal in SerDes channel to single-ended signal in DDR channel
Challenges in DDR AMI Simulation

- DQ and CAC are single-ended (SE) signals that have both differential and common modes
- SE signal has asymmetric rise and fall edges
- DDR Rx does not have embedded CDR as in SerDes. DQ Rx DFE is clocked by forwarded clock
- AMI modeling is new to most DDR designers
- ...
Common Mode in Single-ended Signal

• Resolved in BIRD197.7 with the introduction of a new reserved parameter DC_Offset
• Physical (SE) waveform at Rx DLL input node = Rx GetWave input waveform + DC_Offset
• Rx GetWave input waveform centers around 0V, as in SerDes
• DC_Offset value is a constant that is characterized and passed into Rx Init by EDA tool
• Rx DLL can choose to internally reconstruct the physical input waveform by adding DC_Offset to GetWave input waveform
• Rx GetWave output waveform centers around 0V, same as in SerDes
• EDA tool can choose to add DC_Offset to Rx GetWave output waveform for display
Common Mode in Single-ended Signal (cont’d)

At DQ Rx package

DQ Rx GetWave input

Raw DQ Rx GetWave output

DC_Offset is to DQ Rx GetWave output
Asymmetric Rise and Fall Edges in Single-ended Signal

Simulation using symmetrical edges yields unrealistically symmetrical eye, resulting in inaccurate Vref determination and timing and voltage margin measurements.
• DQ Rx utilizes DFE to mitigate ISI
• DQ DFE is clocked by DQS
Proposal of A New GetWave API to Model Clock Forwarding

long AMI_GetWave2(double *wave,
 double *wave_ref,
 long wave_size,
 double *clock_times,
 char **AMI_parameters_out,
 void *AMI_memory);

- The new GetWave2 function is implemented by DQ Rx model
- Two input waveforms and one output waveform
 - wave: input and output data waveforms
 - wave_ref: input strobe waveform, which is the output waveform of DQS Rx GetWave
- Sizes of wave and wave_ref are the same
- Rx model can choose to process wave_ref, typically in controller DQ Rx model
- clock_times: output clock times generated by Rx model based on wave_ref
• Input strobe waveform is processed by a phase interpolator (PI)
• PI is dynamically trained by Rx DLL to adjust data-strobe skew for optimal DFE clocking
• Adaptive DFE
• Both PI training and DFE adaptation stop after Ignore_Bits to emulate system start-up training
$v_{out}(t) = n \frac{N}{N} v_{in}(t - \tau_1) + \frac{N - n}{N} v_{in}(t - \tau_2), \quad n = 0, 1, ..., N$
Phase Interpolator Training in Controller DQ Rx Model

Controller DQ Rx model can internally train the phase interpolator to adjust data-strobe skew for optimal DFE clocking.

At DQ Rx package

DQ Rx GetWave2 output (with phase interpolator training)

DQ Rx GetWave2 output (without phase interpolator training)

- DQ Rx GetWave2 output
- DQ Rx GetWave2 strobe input
- Strobe after phase interpolator

Data and post-phase interpolator strobe are center-aligned
• Input strobe waveform is directly used to clock DFE
• DQ-DQS skew is optimized by controller write leveling
Jitter Tracking and Unmatched IO Rx

• Correlated jitters in DQ and DQS can be tracked in DQ Rx by clock forwarding
• DDR4 (and previous) DRAMs pad the DQ path to match DQ Rx to DQS
• DDR5 supports unmatched DQ and DQS Rx on both DRAM and controller sides
• Unmatched Rx reduces DQ-DQS jitter correlation and adversely impacts DQ Rx jitter tracking and DFE performance
Jitter Tracking and Unmatched IO Rx (cont’d)

DQ Rx package without DQ & DQS Tx SJ

DQ Rx package with DQ & DQS Tx SJ (0 DQS-to-DQ delay)

DQ Rx package with DQ & DQS Tx SJ (5UI DQ-to-DQS delay)

DQ Rx output without DQ & DQS Tx SJ

DQ Rx output with DQ & DQS Tx SJ (0 DQS-to-DQ delay)

DQ Rx output with DQ & DQS Tx SJ (5UI DQ-to-DQS delay)
Summary

• Asymmetric rise and fall edges need to be taken into account in single-ended signal calculations
• Data buffer DFE is clocked by strobe
• Propose a new GetWave function with two input waveforms for data and strobe to model clock forwarding
• Controller DQ Rx model can internally adjust data-strobe skew to optimize DFE clocking
• Jitter tracking in DFE and unmatched IO Rx are captured by the new GetWave function