2001(+5): A Space/Time Odyssey

1001010

1100010101010100017.

Timing and Electrical Measurement of DDR2 Memory with IBIS 4.1 and AMS

Grand

Gary L. Pratt, P.E. Product Manager gary_pratt@mentor.com

In the beginning ...

- There was SPICE ... and it was sssslllooowv
 - but nobody cared, because hey ... time didn't exist yet
- **Then, there was time ...**
 - But, never quite enough
- Then, there was IBIS
 - and, it was good, and simple to use, and saved much precious time
- Then, came new technology
 - which brought a plague of new keywords across the land
- Then, IBIS grew large and unwieldy
 - and slow to respond to new technologies
- **Then, the IBIS wise-men ... errrr ...wise-people said**
 - let there be AMS
- And, then there was AMS
 - and it was very good
- Then, the masses rejoiced & created multitudes of innovation
 - some of which not even the wise-people had foretold ...

Behold ...

for DDR2 Electrical and Timing Measurement

DDR2 Measurement with IBIS 4.1 and AMS CRITICAL

IBIS 4.1 Measurement Model

Gr

*But, where do violation messages go?

IBIS 4.1 Measurement Model

IBIS 4.1 Memory Model

*But, where do violation messages go?

Measurement Model in IBIS 4.1 Functional SI

IBIS 4.1 Memory Model

*But, where do violation messages go?

DDR2 Measurement with IBIS 4.1 and AMS

Grap

[Pin] sig	nal_name	model_name	R_pin	L_pin C_		in	
1 DQO 2 CK 3 CK#		NC NC NC	0.043 0.030 0.029	5.22nH 2.78nH 2.73nH	1.26 0.91 0.86	pF dqbuff pF clk_input pF clk_input	
[Diff_pin] 2	inv_pi 3	n vdiff. .360V	tdelay <u>.</u> Ons	_typ t	delay_min NA	tdelay_max NA	
********** [node decla DQO CLK CLK [end node d Instantiat IBIS input [circuit ca Port_map A_ Port_map D_ [end circui	rations] _N GND VDI eclaration e the cloo buffer 11] c signal 2 receive (t call]	****EXTERNAL) ss] :k <mark>*</mark> :lk_input 2 LK	MODEL***** Insta [circu Port_m Port_m [end c Insta [circu Port_m Port_m Port_m	ntiate t it call] ap A_sign ap D_rece ircuit ca ntiate t it call] ap DQ ap DQS_p ap DQS_p	he DQ input dq_ful: nal 1 eive DQO all] he DDR2 Meas D(1 2 3	buffer l_input surement Model QS_DQ_CHECK	
circuit call] clk_input Port_map A_signal 3 Port_map D_receive CLK_N [end circuit call]			[end_c decla [exter langua	[end circuit call] declare the DDR2 Measurement Model [external circuit] DQS_DQ_CHECK language vhdl-ams corner twp_DOS_D0_whd_DOS_D0(behaw)			
			ports [end e	ports DQ DQS_p DQS_n [end external circuit]			

[Model] Model_type dq_full_input Input

Vinl = 940.000mV Vinh = 1.560V

8

*How to deal with single-clock, multiple data?

9

*How to deal with multiple speed grades?

TANGENT MEASUREMENT

Wait for vref crossing

Store data points

Wait for vix_ac cross

Calculate the slope from each point to the vix_ac crossing point

Return the maximum slope

Wait for vix_dc crossing

Calculate the slope from each subsequent point back to the vix_dc crossing

Wait for vref crossing Return the max slope

begin

-- measure the setup time tangent

```
wait until VREFDC: -- wait for a crossing of correct direction
  max slope:=0.0; data point cntr:=0; setup crossing <= 0.0*sec;</pre>
  while not vix ac'event loop -- store all the data points until vix ac crossing
      data point v(data point cntr) := Vin'reference;
      data point t(data point cntr) := now;
      wait on vix ac, ASP;*-- wait for next event
      data point cntr := data point cntr + 1;
  end loop; -- go on to find the maximum slope
   setup crossing <= now;
   for i in min slope to data point cntr-1 loop
      slope := (crossing point v - data point v(i)) /
               (crossing point t - data point t(i));
      if slope > max slope then max slope:=slope; end if;
  end loop:
   setup slope <= max slope;</pre>
   -- measure the hold tangent
  wait until not vix_dc; -- wait for opposite crossing of vix dc
  max slope := 0.0;
  crossing point v := Vin'reference; crossing point t:=now;
   -- calculate slope of each point until vix dc, or max points
  while not VREFDC'event loop
      wait on VREFDC, ASP ;
      slope := -(Vin'reference - crossing point v) /
                (now - crossing point t);
      if slope > max slope then max slope := slope; end
  end loop;
  hold slope <= max slope; -- in v/s
end process;
```

*But, "ASP" isn't an IEEE-1076.1 standard.

(error and exception handling removed for clarity) DDR2 Measurement with IBIS 4.1 and AMS

Absolute and Area Over/Undershoot

Create events on crossings

Wait for a crossing into the overshoot or undershoot area

While in the over/undershoot area, integrate the area under the curve

At any time, if the maximum area is exceeded, generate an violation message

Notice: "REF" is included in each message

Error if absolute limit is exceeded

```
begin
```

```
vdd cross <= vin'above(VDDQ);
  vss cross <= vin'above(0.0);</pre>
  max cross <= vin'above(VDDQ+MAXOVERSHOOT);</pre>
  min cross <= vin'above(0.0-MAXUNDERSHOOT);</pre>
  process
      variable area : real := 0.0;
     variable last asp : real;
  begin
      wait until vdd cross or not vss cross;
      area := 0.0; last asp := now;
      while vdd cross or not vss cross loop
         wait on ASP:
         if vin < 0.0 then area := area + (0.0-vin)*(now-last ASP); end if;
         if vin > VDDQ then area := area + (vin-VDDQ)*(now-last ASP); end if;
         if area > MAXOVERSHOOTAREA or area < -MAXUNDERSHOOTAREA then
            REPORT REF. "Violation - Exceeded Overshoot or Undershoot Area":
            exit:
         end if:
         last asp := now;
      end loop;
  end process;
  process (max cross, min cross) begin
      if max cross or not min cross then
        REPORT REFS "Violation - MAXOVERSHOOT or MAXUNDERSHOOT Level Exceeded":
      end if:
  end process;
end architecture:
```

*But, how to get "REF" into the model?

Setup Violation Check

12

```
-- Check the setup timing
check_setup: process (dgs_slope'transaction)
  variable derating : time := 0*sec;
  variable expected, actual : line;
begin
  derating := interp_derating_table(dgs_slope, setup_slope, SETUP, REF);
  if setup_time = 0.0*sec then
        REPORT REF&"Setup Violation -- DQ transistion in progress during DQS event";
   elsif derating /= time'left then
        if (now-dgs'last_event) - setup_time < tDS_base+derating then
            write(expected,tDS_base+derating,left); write(actual,(now-dgs'last_event)-setup_time,left);
        REPORT REF&"Setup Violation, Expected: "sexpected.alls". Actual: "sactual.all;
        end if;
   end if;
end process;</pre>
```

Trigger the process after each DQS slope is determined (VIXACMAX-0.50*VDDQ) Read and interpolate the derating chart according to DQ and DQS slew rate If DQ is in transition (setup_time=0), report a violation If derating is valid, check the setup time If actual setup time is less than derated setup specification, report violation

Timing Analysis with IBIS 3.2 Models (adjusting pin-to-pin specs to die-to-die timing)

Rising and falling Δt Measured with databook load for each process corner.

Can Δt be made standard between models and tool vendors? 13

Timing Analysis with IBIS 3.2 Models (compensating for delay in IBIS 3.2-models)

Timing Analysis with IBIS 3.2 Models

15

Trace Routing Budget IBIS 4.1 Memory Model

*But, how to get slack data into layout tool? *What slew value to use?

IBIS 4.1 and IEEE 1076.1

- Global -- Open Industry Standard
 - Portable between IBIS4.1-1076.1 simulators
- Complete Automation
 - No user intervention required
 - violation messages pinpoint problems
- Tests all connections in one simulation
 - All 180 cpu→mem and 128 mem→cpu nets in one step
- Modeling Engineer is in complete control
 - No need to involve the IBIS committee or EDA vendors to add new functions or features

Future Applications

Automated PCI Express Test Suite?
????

18

Next Steps

19

EDA Vendors

 Support IBIS 4.1 AMS

Silicon Vendors

— Develop and Release IBIS 4.1 AMS models

PCB Engineers

- Demand the benefits of IBIS 4.1 AMS

Accept no substitutes

IBIS Committee

Stay tuned for Ian's presentation

Thanks to

- Randy Wolfe and his associates at Micron for advice on interpreting the JEDEC DDR2 specification and moral support in developing this measurement model.
- Todd Westerhoff for help using IBIS 3.2 models in timing analysis.

20

