Serdes Introduction and AMS modelling

Richard Ward
Serdes Engineering (ASIC)
25-July-2006
Outline

- Serdes Introduction
- AMS Model Approach
Standards for SerDes

• Which Standard would you like to follow?
 - 802.3ap (10G Ethernet over backplane)
 - OIF CEI 6G (short and long reach)
 - OIF CEI 11G (short and long reach)
 - PCI-Express (2.5G gen1, 5G gen2)
 - XAUI (3.125G)
 - Serial ATA (3.125G)
 - FBDIMM/2 (4.8/6.4/8/9.6G)
 - SerialRapidIO, (1.25/2.5/3.125G)
 - Infiniband
 - FibreChannel
 - ...
What is the problem to solve?

- **3.125Gbps**
 - No EQ
 - Tx FIR

- **6.25Gbps**
 - No EQ
 - Tx FIR

~40” FR4 o/p
Example Channel

- Typical channel for 5 to 10Gbps (~40” FR4)
• Differential data has Clock and Data embedded into a serial stream. Most are NRZ/binary.

• Keys parameters are:
 - Jitter generation (Tx) and jitter tolerance (Rx)
 - Equalization ability (both Tx and Rx sides) and adaption
 - Asynchronous tracking rate of Rx
 - PLL jitter rejection (from Refclk and chip/system noise)

• Most higher rate systems are Rx DFE (analog or digital)
How would an AMS model fit?

Different model requirements:
- Architectural analysis
- Customer SI and Interoperability
- Steady-state performance sims
- Higher levels of system integration than previously needed (AMS extending into the RTL/packet processing world)
Performance Metrics

- BER vs V Margin
- Pulse Response
- Crosstalk Impulse Response
- Eye
- Sample PDF
- StatEye (style)
AMS Model Approach

- **Benefits**
 - Electrically aware
 - Integration with chip and board design systems
 - RTL level simulation interface
 - Standard EDA toolset/languages

- **Drawbacks**
 - Performance!
 - we believe this is the technical problem to solve
 - Framework of statistical extrapolation from the time domain
 - CAD license tie-up