Model Connection Protocols for Chip-Package-Board System-level Analysis

IBIS Summit
Design Automation Conference
San Francisco, CA, USA
July 28, 2009

Brad Brim
Sigrity
bradb@sigrity.com
Agenda

- Discuss concepts related to electrical model connectivity for chip/package/board system-level analysis
- Review existing solutions
 - no standards exist
 - some existing solution specifications are under NDA
 - An example protocol specification and physical example
- Observations

NOTE:
- The Sigrity model connection protocol discussed in this presentation is not being proposed as a standard, merely as an example of an existing solution created in reaction to short term need and lack of existing standard protocols.
The challenge

Assume I have …
- a chip/package/board system with hundreds or thousands of physical connections (pins)
- individual electrical models for each chip, package and board
 - I did not generate each of these models myself, therefore I do not have full knowledge of the pin mapping information for each model.

How do I …
1. know which pins of one model to connect to the pins of another model?
2. reliably and in reasonable time connect these models in a netlist or a schematic?
Requirements

- Chip/package/board systems have many physical connections (pins)
 - chip-package boundary ≈ 100 – 5000
 - package-board boundary ≈ 100 – 2000

- Not all electrical models can have pin-level resolution
 - models may be too large to compute, store, etc.
 - difficult to connect in EDA tools

- Adequate modeling may not be possible with net-level resolution
 - especially, if this low resolution is applied throughout the entire system
 - NOTE: “net-level resolution” groups all pins for each net at a domain boundary

- Support is required for
 - arbitrarily pin-grouped models
 - automated connection amongst models in EDA tools
System Analysis

Physical connectivity

Chip-centric model abstraction

Board-centric model abstraction
System Analysis

- A bit more detailed view of electrical model resolution through pin grouping, for one domain boundary
modern system designs requires various levels of model resolution throughout the system, with pin-level, net-level and arbitrarily grouped pins applied to the same component.
Existing Model Connection Protocols for Chip/Package/Board Analysis

- **Sigrity MCP** (Model Connection Protocol)
 - defined by Sigrity
 - publicly available definition
 - objective to support chip/package/board system analysis
 - presently Version 1.0
 - 1.1 available soon with user-requested pin locations

- **Apache CPP**
 - defined by Apache
 - definition covered under NDA

- Implemented as “headers”
- Contained within model-native comment lines
 - model could be either subcircuit or data file
A Typical Model Connection Protocol
(Sigrity MCP)

* [MCP Begin]
* [MCP Ver] 1.1
* [Structure Type] {DIE|PKG|PCB}
* [MCP Source] source text
* [Coordinate Unit] unit
* [Connection] connectionName partName numberPhysicalPins
 * [Connection Type] {DIE|PKG|PCB}
 * [Power Nets]
 * pinName modelNodeName netName x y
 * ...
 * pinName modelNodeName netName x y
 * [Ground Nets]
 * pinName modelNodeName netName x y
 * ...
 * pinName modelNodeName netName x y
 * [Signal Nets]
 * pinName modelNodeName netName x y
 * ...
 * pinName modelNodeName netName x y
* [MCP End]
A Typical Model Connection Protocol

- Only one instance of [Structure Type]

- Multiple instances of [Connection] are possible
 - for a single-die package there will be one die-type connection and one pcb-type connection
 - for a pcb there may be many package type connections
 - for a multi-die SiP package there may be multiple die-type connections

- Only one instance of [Connection Type] per [Connection]

- For power integrity applications there may be no signal nets in the model

- Not all physical pins must be documented, only those included in the electrical model
 - For power integrity applications there may be no signal nets
 - For Touchstone data files there may only be signal nets
 - the reference terminal is implicit for the data file
 - For SPICE subcircuits there are likely grounds net but maybe no power nets
 - the reference terminal must be explicit
A Physical Example

- a few nets in a small 4-layer flipchip BGA package
 (so the MCP sections fit on a single page)
 - 3 power nets
 - 1 ground net
 - 2 signal nets
12-by-12 bump and ball arrays
(for active nets)
Model Resolution

- **pin-level at the chip-package boundary**
 - 36 physical pins - 36 electrical nodes
 - 18 power nodes - 5 VDD_1, 5 VDD_4, 8 VDDcore
 - 16 ground nodes - 16 VSS
 - 2 signal nodes - Net_1, Net_2

- **net-level at the package-board boundary**
 - 36 physical pins - 6 electrical nodes
 - 3 power nodes - 1 VDD_1, 1 VDD_4, 1 VDDcore
 - 1 ground nodes - 1 VSS
 - 2 signal nodes - Net_1, Net_2
Model Extraction Setup

- die-side setup for pin-level model extraction
- board-side setup for net-based model extraction
 - equivalent to pin-level model extraction with 1-by-1 grid-based pin grouping
A SPICE circuit with MCP header
(a mixed pin-level/net-level model)

.SUBCKT FlipChip_pkg_SPICE
+ U1_E3 U1_F1 U1_F2 U1_F3 U1_G3
+ U1_K6 U1_K7 U1_L6 U1_L7 U1_M6
+ U1_D4 U1_D9 U1_E4 U1_E9 U1_H4 U1_H9 U1_J4 U1_J9
+ U1_A1 U1_A12 U1_B11 U1_B2 U1_E5 U1_E8 U1_F7 U1_G6
+ U1_G7 U1_H5 U1_H8 U1_L11 U1_L2 U1_M1 U1_M12 U1_F6
+ U1_L1 U1_K1
+ BGA1_C1 BGA1_K6 BGA1_C10 BGA1_A1 BGA1_L2 BGA1_J3
*

* The following is the Sigrity MCP Section

*[MCP Begin]
*[MCP Ver] 1.0
*[Structure Type] PKG
*[MCP Source] Sigrity XtractIM 3.0.2.07061 7/18/2009
A SPICE circuit with MCP header
(a pin-level die-side connection)

* [Connection] U1 die_12x12 144
* [Connection Type] DIE
* [Power Nets]
 * E3 U1_E3 VDD_1
 * F1 U1_F1 VDD_1
 * F2 U1_F2 VDD_1
 * F3 U1_F3 VDD_1
 * G3 U1_G3 VDD_1
 * K6 U1_K6 VDD_4
 * K7 U1_K7 VDD_4
 * L6 U1_L6 VDD_4
 * L7 U1_L7 VDD_4
 * M6 U1_M6 VDD_4
 * D4 U1_D4 VDDcore
 * D9 U1_D9 VDDcore
 * E4 U1_E4 VDDcore
 * E9 U1_E9 VDDcore
 * H4 U1_H4 VDDcore
 * H9 U1_H9 VDDcore
 * J4 U1_J4 VDDcore
 * J9 U1_J9 VDDcore

individual electrical nodes

VDD_1
VDDcore
VDD_4
A SPICE circuit with MCP header
(a pin-level die-side connection)

* [Ground Nets]
 * A1 U1_A1 VSS
 * A12 U1_A12 VSS
 * B11 U1_B11 VSS
 * B2 U1_B2 VSS
 * E5 U1_E5 VSS
 * E8 U1_E8 VSS
 * F7 U1_F7 VSS
 * G6 U1_G6 VSS
 * G7 U1_G7 VSS
 * H5 U1_H5 VSS
 * H8 U1_H8 VSS
 * L11 U1_L11 VSS
 * L2 U1_L2 VSS
 * M1 U1_M1 VSS
 * M12 U1_M12 VSS
 * F6 U1_F6 VSS

* [Signal Nets]
 * L1 U1_L1 Net_1
 * K1 U1_K1 Net_2
A SPICE circuit with MCP header
(a net-base pcb-side connection)

* [Connection] BGA1 board_12x12 144
* [Connection Type] PCB
* [Power Nets]
 * C1 BGA1_C1 VDD_1
 * F3 BGA1_C1 VDD_1
 * G1 BGA1_C1 VDD_1
 * G3 BGA1_C1 VDD_1
 * K1 BGA1_C1 VDD_1
 * K6 BGA1_K6 VDD_4
 * K7 BGA1_K6 VDD_4
 * M10 BGA1_K6 VDD_4
 * M3 BGA1_K6 VDD_4
 * M7 BGA1_K6 VDD_4
 * C10 BGA1_C10 VDDcore
 * C3 BGA1_C10 VDDcore
 * D4 BGA1_C10 VDDcore
 * D9 BGA1_C10 VDDcore
 * J4 BGA1_C10 VDDcore
 * J9 BGA1_C10 VDDcore
 * K10 BGA1_C10 VDDcore
 * K3 BGA1_C10 VDDcore

a single electrical node
A SPICE circuit with MCP header
(a net-level pcb-side connection)

* [Ground Nets]
* A1 BGA1_A1 VSS
* A12 BGA1_A1 VSS
* A5 BGA1_A1 VSS
* A8 BGA1_A1 VSS
* E1 BGA1_A1 VSS
* E12 BGA1_A1 VSS
* F6 BGA1_A1 VSS
* F7 BGA1_A1 VSS
* G6 BGA1_A1 VSS
* G7 BGA1_A1 VSS
* H1 BGA1_A1 VSS
* H12 BGA1_A1 VSS
* M1 BGA1_A1 VSS
* M12 BGA1_A1 VSS
* M5 BGA1_A1 VSS
* M8 BGA1_A1 VSS
* [Signal Nets]
* L2 BGA1_L2 Net_1
* J3 BGA1_J3 Net_2
* *
* [MCP End]
A SPICE circuit with MCP header

```
* [MCP End]
*
R1  U1_E3  rN1  0.0174356
L1  Vn1  CGN_1  1.40606e-009
R2  U1_F1  rN2  0.0396763
L2  Vn2  CGN_1  1.9193e-009
R3  U1_F2  rN3  0.0179045
L3  Vn3  CGN_1  1.38604e-009
R4  U1_F3  rN4  0.0169535
L4  Vn4  CGN_1  1.36788e-009
R5  U1_G3  rN5  0.0168749
L5  Vn5  CGN_1  1.38677e-009
R6  BGA1_C1  rN6  0.00297266
L6  Vn6  CGN_1  2.5225e-010
R7  U1_K6  rN7  0.0162756
L7  Vn7  CGN_2  1.32381e-009
R8  U1_K7  rN8  0.0168774
L8  Vn8  CGN_2  1.3217e-009
R9  U1_L6  rN9  0.0164076
L9  Vn9  CGN_2  1.33716e-009
```
A Typical Package
(one power net)
Observations

- Chip/package/board designs may have thousands of pins
- Chip/package/board system analysis requires
 - user-definable model resolution
 - automated connection support for EDA tools

- Circuit and data models are commonly applied
 - both should be supported by any connection protocol
- Model connection protocols are much more than simply “port names”
- Proprietary model connection protocols are currently being applied

- An industry standard model connection protocol should be defined
 - user and EDA vendor participation will be required to agree on a standard
 - active participation by more than a few individuals will be required
Thank You!