The IBIS-X macro language

some applications

Al Davis
Idaho State University
Outline

- The component as a macro
- Inherit and Extend
- Test Data, Test Load
- Differential devices
The component as a macro

- Fixed topology
- "Foreach" arrays
The component as a macro

[Pin]

foreach line in [Pin]
 capacitor C0 (0 0) C =
 C_{pin} || [Package]C_pkg
 if (2 != "NC")
 resistor R0 (0 0.int) R =
 R_{pin} || [Package]R_pkg
 inductor L0 (0.int 1) L =
 L_{pin} || [Package]L_pkg
 if (2 != "GND" && 2 != "POWER")
 subckt X0 (1 0 control0 enable0 npdr0 npur0 ngcr0 n_{pcr})
 [Model]2
 end if
end if
end foreach
The component as a macro

[Pin Mapping]

foreach line in [Pin_Mapping]
 define npdr_${0}$ = 1
 define npur_${0}$ = 2
 define ngcr_${0}$ = 3 | 1
 define npcr_${0}$ = 4 | 2
end foreach

]
The component as a macro

[Diff Pin]

```plaintext
foreach line in [Diff_Pin]
    define diff__$0$ = $1$
    define diff__$1$ = $0$
    define vdiff__$0$ =
        (($2$ != "NA") || .2) / 2
    define vdiff__$1$ = -vdiff__$0$
    define delay__$0$ =
        (($3$ != "NA") || 0) / 2
    define delay__$1$ = -delay__$0$
end foreach
```

]
The component as a macro

[Series Pin Mapping]

foreach line in [Series_Pin_Mapping]
 subckt X$0$$1$ (signal0 signal1
 control0 enable0 npdr_0
 npur_0 ngcr_0 $npcr_$0$)
 [Model]2
end foreach

]
The component as a macro

Wrapping it up

[Define Component] IBIS.3.2
foreach line in [Pin_Mapping]
...
foreach line in [Diff_Pin]
...
foreach line in [Pin]
...
[End Define Component]
The component as a macro

I didn't show you

· Package model
· Some details
· Coupling

So what???

· Complete flexibility in pin-to-pad
· User extendable
Inherit and extend

- Start with a standard macro
- Inherit it
- Then add your part

- Example: Differential buffers
Inherit and extend

Differential buffers

[Define Component] extended_diff
inherit [Component] IBIS.3.2
foreach line in [Diff_Model]
 subckt X$0$$1$ (0 1 control0
 enable0 npdr0 npur0
 ngcr0 nPCR0) [Model]2
end foreach
[End Define Component]
Inherit and extend

Differential buffers

[Component] RGF5463
Component_type extended_diff
|| other stuff like it always was!
[Diff Model]
2 3 diff_in
4 5 diff_out
[End Define Component]
Inherit and extend

Differential buffers

[Define Model] Input_diff (ports)
inherit [Model]Input
resistor Rpcx (dpin power_clamp_ref)
 I = [POWER_Clamp](-V)
resistor Rgc (dpin gnd_clamp_ref)
 I = [GND_Clamp](V)
[End Define Model]
Inherit and extend

Differential buffers

[Model] diff_in
Model_type Input_diff
|| just like the regular Input!
.....
[End Define Model]
Test data, Test load

· There is nothing special about "[Model]"!

· Take advantage of that to make something new.
Test data, Test load

[Define Test Load] single Ended (control en near far gnd)
node pulldown_ref pullup_ref gnd_clamp_ref
power_clamp_ref
node 2, 3, 4, 5, 6, 7
capacitor C1_near (near gnd) C = C1_near
resistor Rs_near (near 2) R = Rs_near
inductor Ls_near (2 3) L = Ls_near
capacitor C2_near (3 gnd) C = C2_near
| ... part left out
subckt X_far (far gnd control en pulldown_ref
pullup_ref gnd_clamp_ref power_clamp_ref)
 Receiver_model
[End Define Test Load]
Test data, Test load

[Test Load] load-1
Test_Load_type single Ended
C1_near = 1p
Rs_near = 10
Ls_near = 1n
C2_near = 1p
Rp1_near = 100
Rp2_near = 100
Td = 1ns
Zo = 50
Test data, Test load

[Define Test Data] (trigger dut_near dut_far golden)
node enable_pin pulldown_ref pullup_ref
gnd_clamp_ref power_clamp_ref
subckt x_dut (dut_near 0 trigger enable_pin
 pulldown_ref pullup_ref gnd_clamp_ref
 power_clamp_ref) Driver_model
subckt x_load (dut_near dut_far 0) Test_load
trigger TR (Logic(control) == 1)
trigger TF (Logic(control) == 0)
vsource (golden 0) V =
 wave([Rising_Golden_Waveform](T-TR),
 [Falling_Golden_Waveform](T-TF))
[End Define Test Load]
Test data, Test load

[Test Data] test2]
Test_Data_type single-ended

Driver_model Buffer1
Test_load Load1

[Rising Golden Waveform]
0.0s 25.2100mV 15.2200mV 43.5700mV
0.2ns 2.3325mV -8.5090mV 23.4150mV
0.4ns 0.1484V 15.9375mV 0.3944V
0.6ns 0.7799V 0.2673V 1.3400V
0.8ns 1.2960V 0.6042V 1.9490V
1.0ns 1.6603V 0.9256V 2.4233V