Pad Capacitance Extraction

Hazem Hegazy
IBIS Development Engineer

June 13, 2002
IBIS Summit Meeting
New Orleans, Louisiana
Agenda

- Why it’s so important !!
- Time domain methods
- Frequency domain technique
 - Sweeping the whole domain
 - Tank construction
 - Enhancement
Why It’s So Important !!!

$C_{\text{comp}} = 3 \text{pF}$

$C_{\text{comp}} = 2.4 \text{pF}$
Time Domain Methods

- Apply ramp voltage source ($\beta \cdot t$) & measure the current.
- Subtract DC current in pull up/down device.
- $C(t) = (I_1 - I_2)/2\beta = (I(t)_{\text{Source}} - I(t)_{\text{Device}})/\beta$.
- C_{comp} varies with β !!!!

- Time domain methods depends on $I_C = C^*(dV/dt)$
Frequency Domain Technique

- Time domain methods fails to give one simple result.
- Frequency domain analysis might be the alternative!!
- Spice AC analysis is a small signal time averaging per unit cycle.
- Enhancements to emulate large signal response.
Sweeping the Whole Domain

Which frequency will you pick to calculate C_{comp} !!!??
Tank Construction

- Capacitance physically exists.
- It only varies with voltage.
- Adding Shunt L for resonance.
- Ccomp frequency dependence is omitted.
- One single value for Ccomp.

\[\omega_o = \frac{1}{\sqrt{LC_{comp}}} \]
Results

\[Z_{\text{out}} \]

\[\omega_0 \]
Voltage Dependence

\[\omega_o = \frac{1}{\sqrt{LC_{\text{comp}}}} \]

- As \(V_{dc} \) increases
- \[|Z_{out}| \] approaches 2.0
Voltage Dependence.......

Take time average capacitance From here = 2.68pF

DC value reached by 50 Ω
Final Comparison

\[C_{\text{Comp}} = 2.68\text{pF for this simulation} \]
Closer Look

Spice IBIS

[Graph showing a plot with axes and data points]

Mentor Graphics

Pad capacitance Extraction, Hazem Hegazy, IBIS Summit Meeting, June 13, 2002
Summary

- Hard to get straight answer from time domain methods.
- Can’t calculate C_{comp} from a simple sweep of frequency domain (Which frequency will you take?).
- Tank method gives accurate answer at each voltage value.
- Large variation of C_{comp} is a limitation for tank method as well as IBIS standard.