I-T Tables and BIRD42.3 Revisited

Bob Ross
Teraspeed Consulting Group

IBIS Summit Meeting
Design Automation Conference 2004
San Diego, California

June 8, 2004
Some IBIS Summit Presentations Regarding Power Rails for SSN and I-T

- See IBIS home page Articles, summits on the eda.org IBIS summits site
- Raymond Chen, Sigrity: Feb. 2004 (add Cdie)
- Bernhard Unger, Siemens: Jan. 2000 (adds Cpre and adjustment for rail collapse)
- Ambrish Varma, NCSU: June 2004 (simultaneous switching noise and rail collapse)
- Norio Matsui, Applied Simulation Technology: Jan. 2001 (LSI power and ground model for EMI simulation with internal clock and paths)
 - I-T source for supplies derived from statistical switching model simulations (with AMS or SPICE or simplified SPICE)
 - Part of ICEM model and IC-Emit freeware (Feb. 20, 2004)
 - Can be modeling using multi-lingual extensions
- C. Kumar, Cadence: Jan., Feb. 1998, Bob Ross Feb. 1998: (I-T tables in buffers and BIRD42.3)
Adding Cdie
(Chen, February 2, 2004)

After Adding Cdie

1. Driver end waveform will be more accurate.
2. Noise simulation will be more accurate, for example, power and ground noises at die pad.

System includes signals, power and ground for package and PCB:

- \[\text{nd}_{pu} \]
- \[\text{nd}_{pc} \]
- \[\text{nd}_{pd} \]
- \[\text{nd}_{ge} \]
- \[\text{C}_{comp} \]
- \[\text{gnd} \]

OUTPUT BUFFER

- VRM, DC/DC
- Receiving end device
- Termination
Chen, Continued

After Adding Cdie

1. With a few nF Cdie, victim line (stuck low) at the board receiver end shows less noise.
Rail Collapse Adjustment (Unger, January 31, 2000)

Enhanced two Waveform Behavioral Model including prestage Vdd-Vss Capacitance

Cpre: Vdd-Vss prestage Capacitance
Evaluation: SPICE simulation using a capacitance bridge

Cpre: Vdd-Vss prestage Capacitance
Evaluation: SPICE simulation using a capacitance bridge

Cpre

VDD

Ipc(Vout)

C_comp/2

VSS

Igc(Vout)

C_comp/2

OUT

kssnr(Vdd-Vss) * kpu(t) * Ipu(Vout)

kssnf(Vdd-Vss) * kpd(t) * Ipd(Vout)
BD4 SSN analysis results (rising edge)
Vdd current of 1 bd4 buffer
Number of SSO = 10

Supply currents:
- Transistor based
- Enhanced behavioral including prestage C
- Usual behavioral
BD4 SSN analysis results (rising edge)
Noise on quiet outputs
Number of SSO = 10

Quiet output signals:
- Transistor based
- Enhanced behavioral including prestage C
- Usual behavioral
4. Core Emission Model

ICEM includes a simple core model, not handled by IBIS

- Basic parameters: \(C_d, I_b \)
- Advanced parameters: \(R, L, C_b \)
Core Model I-T Emission Models as Multi-Lingual SPICE Extension of IBIS

68HC12 D60

ICEM MODEL

IC model

Ib

Current generator Ib

LPackVss=2.2nH
LPackVdd=2.2nH
Cd=3.2nF
RVss=2
Rvdd=2
Cb=50pF

| Period = 31.25ns.
| Imin = 0.01A
| Imax = 0.4A
| Tr= 1ns

| Some additions to the IBIS model:
|**
| [Circuit Call] ICEM
| | mapping port node
| Port_map vdd_ic 12
| Port_map vss_ic 14
| [End Circuit Call] | Code connecting 12 to 65 and 14 to 66 on the die is not shown
|**
| [External Circuit] ICEM
| Corner corner_name file_name circuit_name (.subckt name)
| Corner Typ icem_d60.spi icem_typ
| | Ports are in same order as defined in SPICE
| Ports vdd_ic vss_ic
|**

* Separate SPICE file icem_d60.spi

**
.SUBCKT icem_typ vdd_ic vss_ic
RVDD Vdd_ic Vdd_n1 2
LVDD Vdd_n1 Vdd_n2 2.2n
Cd Vdd_ic Vss_ic 3.2n
Cb Vdd_n2 Vss_n2 50p
RVSS Vss_ic Vss_n1 2
LVSS Vss_n1 Vss_n2 2.2n
Ib Vdd_n2 Vss_n2 PULSE(0.01 0.4 10ns 1.0ns 1.0ns 0.01ns 31.25ns)
.ENDS icem_typ
**
BIRD 42.3 - IBIS 2.1 Buffer Model

Drivers

- [Pullup]
 - Rise & Fall Transitions
 - [Pullup]
 - [Pullup Reference]
- [Pulldown]
 - [Pulldown]
 - [Pulldown Reference]

[Power Clamp Reference]

Fixed Clamps and
C_comp

Package

Die

L_pin R_pin

GND

C_pin

Pin

TERASPEED
CONSULTING
GROUP
V-T Tables and Fixture Loads to get $K_u(t)$, $K_d(t)$ for Rise, Fall Edges

Recommended Loads:
- 50 Ω to Vcc
- 50 Ω to Gnd
BIRD42.3 Proposal
(V-T and I-T tables)

\[I_{\text{pullup_reference}}(t) \]

\[I_{\text{pulldown_reference}}(t) \]

(0, 1, or 2 current tables allowed)
Current Definition Problem?
EDA Spec., Processing Ambiguity

-ipullup_reference(t)
-ipulldown_reference(t)

(0, 1, or 2 current tables allowed)
BIRD42.3 Assumptions and Limitations

- Adds V-T and I-T PAIRS for a given fixture load
 - Under [Rising Waveform] or [Falling Waveform] table
 - Keep V-T table and its fixtures
 - [Pulldown Reference Current], [Pullup Reference Current] tables (None, both, or either - such as one easiest to isolate)
 - Could support Open_drain, Open_source and ECL models

- Currents might need to be separated from clamps or other current paths in the model
 - Permanent (internal terminator “clamps”)
 - Individual capacitance to each rails
 - Very complex for tools to automatically do this
Some Format Considerations

- Referenced to driver rails since clamps are optional, and clamp currents hard to isolate
- Extension limitations may exist
 - Driver Schedule – rails not necessarily common or inherited, nor currents easily allocated to scheduled models
 - Submodels – same rails, but triggered internal behavior needs triggered I-T data
 - True differential buffer current allocation not considered
 - ECL Pullup Reference Current allocation/algorithm issue
EDA Tools: Several Choices for Over-specified Cases

- **Voltage based solution option**
 - Use the V-T table information first for V-T data matching via existing Ku(t), Kd(t) extraction methods
 - May not capture as accurately the rail currents

- **Current based solution option**
 - Use the current information first (more direct solution of Ku(t) and Kd(t) with excess common “crowbar” currents)
 - But not match the V-T data as well

- **Augmented model for voltage and current matching**
 - Adds Idelta(...) and Vdelta(...) variables for more matching options and strategies
 - (E.g., match V-T tables, then match currents with Idelta)
 - Idelta(), Vdelta() could be a function of Iu and Id currents
 - More research needed
Augmented Model
(Ross, Feb. 26, 1998)
I-T Extraction Issues

• **SPICE based (most practical)**
 – Still must carefully isolate rail currents and then post-process them to fit topology
 – Can use ideal current sense mechanism (0 V voltage sources)
 – Still may deal with fast current edges and spikes
 – Best R_fixture, V_fixture choices need to be investigated for overall accuracy (V_fixture = GND, Vcc, Vcc/2, etc.)

• **Measurement based (many issues and may be impractical)**
 – Includes the package
 – Current probe bandwidth & impedance vs. 50 ohm measurements
 – Or standard 1 ohm test load distortion
 – Several buffers on same power line
 – Unrelated currents from non-driver circuits
Package Model for Supplies (not explicit in IBIS)

- **R**_**pin** - **L**_**pin** - **C**_**pin**
 - Implied, but puts **C**_**pin** across voltage source
 - Could be distributed model (small T-line)

- **R**_**pin** - **C**_**pin** – **L**_**pin**
 - **C**_**pin** to reference rail, to ideal GND or across **L**_**pin** to **V**cc
 - Moves **C**_**pin** from rail
Summary and Observations

• BIRD42.3 explained
 – Issues and compromises to fit in IBIS
 – EDA simulation options
• Other approaches given
 – SSN model extensions
 – Core I-T models for ICEM
• What is the problem?
 – Simultaneous switching noise of selected buffers?
 – Board power distribution issues and internal core noise?
• Do I-T tables help solve the problem?
 – I-T IBIS buffer extension or other proposals?
 – Multi-lingual extensions?
 – EDA tool support?