Introduction of P2401
LSI-Package-Board Standard Format

JEITA EDA-TC Standardization Representative
Genichi Tanaka
LSI Package Board needs...

- Mutual Communication
- Design Consistency
- Shorten Development Time

Enabled by

New Standard format
About LPB-WG

Members

- LPB-WG + ex-LPB-WG
 Toshiba, Fujitsu semiconductor, Renesas Electronics
 Canon, Sony, Panasonic, Denso, Nokia
 Fujitsu VLSI, Sony LSI, NEC System Technologies
 Toppan NEC Circuit solutions
 Zuken, Cadence Japan, Mentor Graphic Japan, StayShift(nimbic)
 Fujitsu Advanced Technologies, Gem Design Technologies.
 ANSYS, ANSYS Apache, ATE service(Sigrity) etc.

Issues

- Product development flow & EMC issues

Current

Time consuming, re-design at all => development cost, missing business window
Target to improve

• How to improve…

Product planning → Circuit Design → Layout → SI/PI/EMC Check → Manufacturing → Compliance / Field Test

Improve - put check point from early stage,

IBIS Sim → IBIS Sim → IBIS Sim → IBIS Sim

Reduce iterations
=> Time to market

IBIS Sim issues Free
Challenge of EMC simulation in design

- To estimate simulation time which is allowed in each design steps

Product planning → Circuit Design → Layout → SI/PI/EMC Check → Manufacturing → Compliance /Field Test

Allowable Simulation time

- 0.5 h
- 1 h
- 3 h
- 3 days
- 1~3 week

Allowable simulation times are different in the development stage.
What is the simulation time?

- definition

Simulation time =

Parameter collection + setup + calculation

- Meeting, e-mail, negotiations
 - hand
 - mesh, method, hard

Typical TAT

2 weeks

1 day

30 hours

time
• Actually …

IBIS simulation cannot be done at early stage.

Allowable Simulation time

1~3 weeks
Challenge to reduce the time. But...

<table>
<thead>
<tr>
<th>Parameter collection</th>
<th>setup</th>
<th>calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meeting, e-mail, negotiations</td>
<td>hand</td>
<td>mesh, method, hard</td>
</tr>
</tbody>
</table>

- 2 weeks
- 1 day
- EDA / computer / Academic challenge

Supplied by OR tech:
- Simulation time < 97 sec / port
- Memory usage 680 M8
- 13 Million cells; grid: 15 um < Δ < 200 um
- Used CPU: Intel Xeon E5-2687W
Still…

- Not enough …

Allowable Simulation time

Still …IBIS simulation cannot be done at early stage.
What LPB is trying to achieve?

Parameter collection	setup	calculation
2 weeks | 1 day | EDA / computer / Academic challenge

Common formats

List of information, exchange format, common terms & definitions

Community / e-commerce

Extremely shorten total simulation time
Reach to the target!

• Finally!

IBIS simulation can be done from early stage.

IBIS Sim verification

1~3 weeks
Design and Simulation

• LPB Standard format is also effective to shorten design process.
Design and Simulation

• LPB Standard format is also intended to shorten design process.
LPB Standard format

JEITA LPB-WG produce LPB Standard format.

Design environment to be constructed by 6 formats,
1. Project Manage (M-Format)
2. Netlist (N-Format)
3. Component (C-Format)
4. Design Rule (R-Format)
5. Geometry (G-Format)
6. Glossary
Exchange information in supply chain

LPB standard format reveal what the information necessary. The required information must be shared and are provided in the supply chain.
LPB Community

http://www.lpb-forum.com/

User/EDA/Suppliers community

LPB Forum

EDA vendors

CAD CAE
Develop LPB interface

Users/Designers

Semiconductor Electronics products
Implement LPB design flow

Suppliers

Package, PWB, Passive, Connectors, etc..
Deliver design rule parametric data
With LPB format.

LPB Standard format
is promoted as for ‘Forum Standard’.

Show edsfair

http://www.edsfair.com/

Standardization committee

JEITA EDA-TC/LPB-WG

Copyright © JEITA EDA-TC LPB-WG All Rights Reserved 2014
International Standardization Plan

- Standardization Plan

Approved project: P2401 LPB-WG

IEC dual logo: follows P2401
EDA vendors adoption

• More than 10 vendors already start to develop LPB interface.

• In addition, Cadence/ Fujitsu advanced technologies are also member of standardization committee of LPB.
LPB Standard Format
& Usage example
LPB Standard Format

Design environment to be constructed by 6 formats

1. Project Manage (M-Format)
2. Netlist (N-Format)
3. Component (C-Format)
4. Design Rule (R-Format)
5. Geometry (G-Format)
6. Glossary
LPB Standard Format Abstract

## Format	Abstract	Benefit
Project Management (M-Format) | Manage the LPB files of the LSI, package and board.
- Manage the history, revision and update of the files
- JEITA original format using XML | Easy to Manage Design history
Easy to understand Design Status
Understanding The Latest Condition for Verification

Netlist (N-Format) | Connection of the parts
- Netlist between LSI, Package and Board.
- Verilog HDL format | Easy to Check Connection Between LSI-PKG-Board
Enable to Simulate on Board Level

Component (C-Format) | Information of the parts that includes
- Pin assignment
- Design constraint
- Design Status
- JEITA original format using XML | Easy to Verify for Optimization of LPB
Clarification of Constraint Condition

Design Rule (R-Format) | Rules of the components that includes
- Design rule
- Assembly rule
- Characteristics of the material
- JEITA original format using XML | Clarification of Design Rule in Advance
Clarification of Verification Condition
Easy to Set up for Verification

Geometry (G-Format) | Geometry of the Package and Board
- XFL format | Efficient Use of Design Property
Use as Reference Design
Easy to convert Data
LPB Standard Format Abstract

Project Manage (M-Format)

Abstract
Manage the LPB files of the LSI, package and board.
- Manage the history, revision and update of the files
- JEITA original format using XML

Example

```
<include MFORMAT="MFMT_FKB48.xml" />
<include MFORMAT="MFMT_SOC_PKG.xml" />

<class comment="DDR MEMORY" >
  <CFORMAT file_name="CFMT_DDR.xml" />
  <RFORMAT file_name="RFMT_DDR.xml" />
  <NFORMAT file_name="NFMT_DDR.v" />
  <OtherFile file_name="DDRPowerModel.sp" />
</class>
```
LPB Standard Format Abstract

Netlist (N-Format)

Abstract
Connection of the parts
- Netlist between LSI, Package and Board.
- Verilog HDL format

Example

```verilog
module JEITA_SAMPLE ( );
    wire [23:0] FKBDO ;
    wire [23:0] FKBDI ;
    wire VDD33 ; /* PG_NET */
    wire DGND ; /* PG_NET */

    FKB48 FKB48 ( .AIN(FKBDO), .AOUT(FKBDI) ) ;
    SOC_PKG SOC ( .FKBDO(FKBDO), .FKBDI(FKBDI) ) ;
endmodule
```

Copyright © JEITA EDA-TC LPB-WG All Rights Reserved 2014 2014/06/05 Page24
LPB Standard Format Abstract

Component (C-Format)

<table>
<thead>
<tr>
<th>Abstract</th>
<th>Information of the parts that includes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Pin assignment</td>
</tr>
<tr>
<td></td>
<td>- Design constraint</td>
</tr>
<tr>
<td></td>
<td>- Design Status</td>
</tr>
<tr>
<td></td>
<td>- JEITA original format using XML</td>
</tr>
</tbody>
</table>

Example

```xml
<module name="SOC_PKG" type="PKG" shape_id="PKG_BODY">
  <socket name="SOC_PKG">
    <port id="A5" x="-8500" y="12500" angle="0" name="FKBDO[5]" />
    <port id="A6" x="-7500" y="12500" angle="0" name="FKBDO[2]" />
    <constraint>
      <impedance group_name="FKB_DIN" type="single" min="40" typ="50" max="60" />
      <delay group_name="FKB_DIN" min="100" typ="150" max="200" />
    </constraint>
  </socket>
</module>
```
LPB Standard Format Abstract

Design Rule (R-Format)

Abstract
- Rules of the components
 - Design rule
 - Assembly rule
 - Characteristics of the material
 - JEITA original format using XML

Example

```xml
<material_def>
  <conductor material="COPPER" volume_resistivity="1.68e-8" />
  <dielectric material="FR-4" permittivity="4.5" tan_delta="0.035" />
</material_def>

[layer_def>
  <layer name="TOP_COND" type="conductor" thickness="0.030"
    conductor_material="COPPER" />
  <layer name="DIELECTRIC12" type="dielectric" thickness="0.100"
    dielectric_material="FR-4" />
</layer_def>

[spacing_def>
  <layer name="TOP_COND">
    <line_to_line space="0.050" />
  </layer>
</spacing_def>
```
LPB Standard Format Abstract

Geometry (G-Format)

| Abstract | Geometry of the Package and Board
- XFL format |
|----------|--|
| Example | shape 1 4 53.2 26.8 90 N
via 1 4 V020C060C085 54.55 20 0 N
via 2 3 B010C050C075C23 41 24.25 0 N
shape 1 11 35.5 29 0 N
via 1 2 B010C030C12 35.5 29 0 N
path 2 0.1 {
 41 24.25
 41.000000 24.750000
 } |
LPB Files Delivery

- **C-Format**
 - Die Size
 - Package size
 - Die mount rotation
 - Package mount rotation

- **N-Format**
 - Connectivity
 - Die models IBIS/SPICE CPM/LPM

- **M-Format**
 - Revision number of Each N/C/R/G files

- **G-Format**
 - PKG routing
 - PWB Routing
 - Line/Space
 - Via pitch/size/hole
 - Layer Stuck up
 - Material parameter

- **R-Format**
 - Wire Bonding rules

- **Passive components/connectors**
 - Outline
 - Terminal location
 - Simulation model correspondence

- **Package models**
 - S-para
 - SPICE
 - IBIS

- **Simulation model**
 - S-para
 - SPICE etc

- **Analysis**
 - Auto set-up simulation project
LPB sample files for test bench

Component Details
- SOC New Design
- DDR generic parts
- FKB48 generic parts
- Power IC generic parts
- Xtal generic parts
- Passive generic parts

Analog Signal (SMA x6)
- DDR
- Power IC
- PCIe x4
- GPIO
- SSTL15
- SSTL15
- TOP
- Edge Finger

Golden Sample are provided as a test bench for implementation.
Reference flow using LPB standard format

To understand the function of the LPB standard format.
Growth of LPB files in design steps

C-Format

<table>
<thead>
<tr>
<th>C-Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>header</td>
</tr>
<tr>
<td>Global</td>
<td>unit: Defines the unit shape, pad stack, and input/output ports of the module</td>
</tr>
<tr>
<td></td>
<td>shape: Defines the shape</td>
</tr>
<tr>
<td></td>
<td>pad stacking: Defines pad stacking and pad stack</td>
</tr>
<tr>
<td>Module</td>
<td>socket: Defines the input/output ports of the module</td>
</tr>
<tr>
<td></td>
<td>port: Defines the port shape, name, and location</td>
</tr>
<tr>
<td></td>
<td>port group: Defines the group of the ports</td>
</tr>
<tr>
<td></td>
<td>power domain group: Defines the power domain of the signals</td>
</tr>
<tr>
<td></td>
<td>swappable port/group: Defines the swappable ports/port groups</td>
</tr>
<tr>
<td></td>
<td>frequency: Specifies the operating (clock) frequency for the port</td>
</tr>
<tr>
<td></td>
<td>constraint: Defines the constraints for the upper hierarchy</td>
</tr>
<tr>
<td></td>
<td>specification: Defines the specification of the module</td>
</tr>
<tr>
<td></td>
<td>reference: Defines the connection procedure between ports in socket sections and ports in referenced files.</td>
</tr>
<tr>
<td>Component</td>
<td>placement: Defines the placement of the module</td>
</tr>
</tbody>
</table>

LPB files will grow every time you go through the process of the design.

- Port ID, Coordinate, Port Name
- Swappables Ports/Port groups
- Impedance, Delay, Skew

Placement Information of the parts

[Example]

```xml
<placement ref_module="SOC" inst="SOC" x="400" y="-6500" />
<placement ref_module="DDR" inst="DDR0" x="37000" y="-3200" />
```
<Example> The growth of C-format

LPB files grow and share the information each other.
<Example> The growth of C-format

PKG-C3
No info. about port swap

PKG-C4
Her is additional preparation

Add swappable info.
Give the constraint from package designer to board designer
Share the information about constraint and flexibility
=> change of design proposal is possible
LPB Standard Format

Summary
Benefit of LPB format

• Quick & Accurate design/simulation set up
 ➢ No more e-mail/phone call/meetings
 ➢ Avoid human error; eliminate hand edit, version control

• Feedback can be done from any parties, and instantly.
 ➢ For optimization/cost down/quality up feedback

• Easy implementation
 • Human readable, open format XML/Verilog-HDL
 • XML parser available.
 • Simple / light geometry format (G-format:XFL)
Join us!

Visit & Support

• Visit website “LPB format” “LPB forum”
• Please support International Standard IEEE SA P2401

Link Together by LPB standard format