European IBIS Summit at SPI2019, June 21, 2019, Chambery, France

An Adaptive Algorithm for Fully Automated Extraction of Passive Parameterized Macromodels

Alessandro Zanco, Elisa Fevola, Stefano Grivet-Talocia, Tommaso Bradde, Marco De Stefano Dept. Electronics and Telecommunications, Politecnico di Torino, Italy alessandro.zanco@polito.it

POLITECNICO DI TORINO

Background: Macromodeling

Advantages:

- Compact
- Accurate

21-June-2019

- Reduced-order
- SPICE-compatible

Background: Data-driven macromodeling flow

Background: Macromodeling

Why a *passive* model?

A passive model is guaranteed stable

Background: Parameterized Macromodeling

Pre-layout, structure is not fixed but can be parameterized Input: sets of S-params from field solver (as few as possible) Objective: optimization, what-if, DOE, minimize solver runs Requirement: parameterized model (SPICE if possible)

Parameterized Macromodeling: an example

Multiboard PCB link parameter: via radius a

[Courtesy: J. B. Preibisch and C. Schuster, Technische Universität Hamburg-Harburg, Hamburg, Germany]

SPICE transient simulations with NL terminations

Parameterized Macromodeling Flow

Fitting data with a parameterized model

 $H(s_k; \vartheta_m) \approx H(s_k; \vartheta_m)$ $\uparrow \qquad \uparrow$ Model Fitting
Frequency sweep $s_k = j \ 2\pi f_k; \ k = 1, ..., K$ Parameter sweep = 1, ..., M

Frequency responses from field solver

PROBLEMS

- Large number of simulations
- Expensive in terms of time and resources
- Not feasible for large number of parameters

D. Deschrijver, T. Dhaene and D. De Zutter, "Robust Parametric Macromodeling Using Multivariate Orthonormal Vector Fitting," in IEEE Trans. MTT, vol. 56, no. 7, pp. 1661-1667, July 2008

P. Triverio, S. Grivet-Talocia and M. S. Nakhla, "A Parameterized Macromodeling Strategy With Uniform Stability Test," in IEEE Transactions on Advanced Packaging, vol. 32, no. 1, pp. 205-215, Feb. 2009

Proposed Approach

Adaptive sampling scheme for point selection

GOALS:

- Minimal number Q of responses
- Optimal parameter configurations $\boldsymbol{\vartheta}_{q}$
- Final stable and passive model $H(s; \vartheta)$

MODEL-DRIVEN

Adaptive Point Selection

Exploration

D. Deschrijver, K. Crombeq, H.M. Nguyen, T. Dhaene," Adaptive Sampling Algorithm for Macromodeling of Parameterized S-Parameter Responses," in IEEE Trans. MTT, vol. 59, no. 1, pp. 39-45, 2011

21-June-2019

Model-Data error

Identify regions where model is less accurate

Error between data and intermediate model:

$$R^{2}(\boldsymbol{\vartheta}_{q}) = \frac{\sum_{k} \left\| \mathbf{H}(s_{k}, \boldsymbol{\vartheta}_{q}) - \mathbf{H}(s_{k}, \boldsymbol{\vartheta}_{q}) \right\|^{2}}{\sum_{k} \left\| \mathbf{H}(s_{k}, \boldsymbol{\vartheta}_{q}) \right\|^{2}}$$

$$\Lambda_2\left(\boldsymbol{\vartheta}_q\right) = \frac{R(\boldsymbol{\vartheta}_q)}{\sum_{q=1}^Q R(\boldsymbol{\vartheta}_q)}$$

Passivity Violations

21-June-2019

Passivity check

Finding all Passivity Violations of parameterized models

Why a passivity metric?

- In-band passivity violations
 Bad model accuracy
- Predictive capabilities of Hamiltonian-based approach

model responses, NOT simulation points

PROXY FOR MODEL-DATA ERROR

Passivity Violations Metric

Superimpose in-band passivity violations to Voronoi cells

 $S(\boldsymbol{\vartheta}_q) = max_{\omega \in \Omega} \sigma_{max}(\mathbf{H}(s; \boldsymbol{\vartheta}))$

Associate to each cell the largest violation

 $\Lambda_3(\boldsymbol{\vartheta}_q) = \frac{S(\boldsymbol{\vartheta}_q)}{\sum_{q=1}^Q S(\boldsymbol{\vartheta}_q)}$

E. Fevola, A. Zanco, S. Grivet-Talocia, T. Bradde, M. De Stefano, "An Adaptive Sampling Process for Automated Multivariate Modeling Based on Hamiltonian-Based Passivity Metric," to appear in IEEE Trans. CPMT, 2019

Adaptive Selection of New Points

Final metric

$$\Lambda(\boldsymbol{\vartheta}_q) = w' \Lambda_1(\boldsymbol{\vartheta}_q) + w'' \Lambda_2(\boldsymbol{\vartheta}_q) + w''' \Lambda_3(\boldsymbol{\vartheta}_q)$$

weights to tune metrics

- Rank the **Voronoi cells** on the basis of the final metric
- Take 1/3 of cells with **higher ranking**
- Place the new points inside these cells

Manufacturing Technology, 2017

21-June-2019

Perturbation of model coefficients $(\Delta \mathbf{R}_n)$

S. Grivet-Talocia, "A Perturbation Scheme for Passivity Verification and Enforcement of Parameterized Macromodels," to appear in *IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017*

Iterative process

21-June-2019

Perturbation of model coefficients $(\Delta \mathbf{R}_n)$

S. Grivet-Talocia, "A Perturbation Scheme for Passivity Verification and Enforcement of Parameterized Macromodels," to appear in *IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017*

Iterative process

21-June-2019

Perturbation of model coefficients $(\Delta \mathbf{R}_n)$

S. Grivet-Talocia, "A Perturbation Scheme for Passivity Verification and Enforcement of Parameterized Macromodels," to appear in *IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017*

Iterative process

21-June-2019

21-June-2019

Model vs data responses

Model vs data responses

Model vs data responses

Parameters: $\vartheta^1 = W \in [25 - 35] \text{ mil}$ $\vartheta^2 = S \in [25 - 35] \text{ mil}$

21-June-2019

Iteration 2

Conclusions

- Fully automated algorithm for the generation of stable and passive parameterized macromodels.
- Identification of a quasi minimal set of simulation points.
- Enforcement of passivity and stability on the final model using perturbation approach.