Some Remarks on Electrical Board Descriptions

Michael Schäder European IBIS Summit
Munich 2003

Copyright © 2003 Zuken GmbH, EMC Technology Center,
Vattmannstr. 3, D-33100 Paderborn, Germany
Email: michael.schaeder@zuken.de
A board level component is the generic term to be used to describe a printed circuit board (PCB) or substrate which can contain components or even other boards, and which can connect to another board through a set of user visible pins. The electrical connectivity of such a board level component is referred to as an Electrical Board Description.

Excerpt from IBIS 4.0 spec.

Typical examples of use are:
- SIMM, DIMM Modules,
- MCMs,
- Processor Modules, and also
- Packages
EBD Limitations

- Transmission line parameters have to be derived with respect to well defined reference plane(s).
- No coupling between paths.
- Thus, no correct modelling of differential signalling.
- Insufficient connector modelling.
[Begin Board Description] zmini
[Manufacturer] Zuken
[Number Of Pins] 1
[Pin List] signal_name
 1 D0
[Path Description] net1
Pin 1
Len = 0.1 L = 7.5n C = 3.0p /
Node U1.1
[Reference Designator Map]
U1 zsimple.ibs zsimple
[End Board Description]
[End]
[Path Description] CAS_2

Pin J25
Len = 0.5 L=8.35n C=3.34p R=0.01 /
Node u21.15
Len = 0.5 L=8.35n C=3.34p R=0.01 /
Node u22.15
Len = 0.5 L=8.35n C=3.34p R=0.01 /
Node u23.15

Example from IBIS 4.0 specification
[Path Description] sig1

Pin J27
Len = 0 L=1.6n /
Len = 1.5 L=6.0n C=2.0p /
Node R2.1
Node R2.2
Len = 0.5 L=6.0n C=2.0p /
Node U25.6

Example from IBIS 4.0 specification
EBD Path Example 3 (Fork/Endfork)

[Path Description] PassThru1
Pin B5
Len = 0 L=2.0n /
Len = 2.1 L=6.0n C=2.0p /
Fork
Len = 1.0 L = 1.0n C= 2.0p /
Node u23.16
Endfork
Len = 1.0 L = 6.0n C=2.0p /
Pin A5

Example from IBIS 4.0 specification
Common Problems in EBDs

- Unresolved external references.
- Missing boundary pins.
- Double listed boundary pins.
- Incomplete path descriptions.
- Connector modelled as part of path description.
- Ambiguous order of R,L,C, if described in one path segment:
 \[\text{Len} = 0 \quad L=5\text{n} \quad C=4\text{p} \quad R=0.01 \]
- Path descriptions are not optimised.
- Confusion about arbitrary unit length.
Apply EBDs in Simulation (Directly)

- .ebd-/ .ibs-files are read in at simulation time.
- Design and EBD data have to fit together.
- Final topology is known at simulation time first.
Another way getting EBDs into Simulation

- Convert EBD into the simulation environment’s specific topology format.
- Combine PCB component(s) pins with the EBD’s boundary pins (logically).
- Consider EBD paths in electrical net extraction.
- Perform simulation as usual.
Conversion of EBDs

- Can improve quality of final topology description.
- Enables logical combination of PCB with EBD data.
- Allows connector models to be used (PCB ↔ EBD).

IBIS Golden P.

IBIS .ebd-file

IBIS .ibs-file
Simulate Combined PCB/EBD Topology

- EBD description is part of the topology input.
- Thus, topology is complete.
- No need to load simulation environment with extra topology extraction and combination tasks.