IBIS in the Design Chain of Noise Modelling

Manfred Maurer, Thomas Steinecke

manfred.maurer@siemens.com
thomas.steinecke@infineon.com
Contents

- Motivation
- Design Chain
- Model Hierarchy
- Model Integration
- IBIS Viewpoint
- Conclusion
Motivation

- Signal Integrity ✓
- Power Integrity + EMI !

IBIS
2.1 / 3.2 / 4.1+

I/O Circuit Model:
U/I, du/dt, RLC

Power Net Model:
di/dt, RLC
Design Chain

- **Goal** = High reliability of end customer products
- **Process** = Reliability requirements for all components (top-down)
 - Standardized EMI Models along design hierarchy (bottom-up)
 - Use common model format (SPICE, VHDL-AMS)
Model Hierarchy (1)

- **Level „IC“ (Chip Floorplan + IC Package):**
 - Minimize EMI by on-chip design measures and block place+route
 - Minimize EMI by in-package design measures and substrate routing

- **Level „ECU“ (IC Placement + Power/Signal Routing):**
 - Minimize EMI by ECU on-board design measures and IC place+route

- **Level „Car“ (ECU+Antenna Placement + Harness Routing):**
 - Minimize EMI by in-car design measures and improved control unit position & harness interconnects
Model Hierarchy (2)

- **Level „IC“ (Chip Floorplan + IC Package):**
 - ECS = Equivalent current source, describes $i(t)$ of every IC function block
 - CEM = All ECS of a chip, connected by RLC of on-chip power networks
 - **ICEM** = Chip (CEM) as „black box“ + RLC of IC package
Model Hierarchy (3)

- Level „IC Placement“ + „Power/Signal Routing“:
 - **IBIS** = I/O buffer description for IC
 - **ICEM** = Power supply noise + network description for IC

![IBIS 4.1+](image)
Model Integration

- ICEM can be integrated into IBIS in two ways:
 - as $i(t)$ table
 - as executable SPICE model

- $i(t)$ table requires IBIS standard extension

- Executable SPICE is supported by IBIS 4.1+

IBIS viewpoint of ICEM Models

- Why ICEM – Model from IBIS viewpoint
 - EMI simulation
 - SI simulation under more realistic Vdd/GND connections

- Model Structure
- Model placement
- What is required in practice?
 - the ICEM – model
 - BIRD95.1(2)

- Conclusions
ICEM Model Structure

- 2 x Current generator
 - different behavior at rising / falling CK-edge
 - different amplitude
 - different pulse width
 - PWL current shape (1. approx. triangle)
 - coupled by variable timing relation ➔ frequency

- RLC package / bonding / die
 - conform to the IBIS specification

- BIRD95.1 describes the placement of the ICEM model
 - [External Circuit] ICEM_xx
 - [Circuit Call] ICEM_xx
ICEM Model Example

- **SPICE subcircuit**

```
.SUBCKT ICEM1_typ vdd_ic vss_ic t_dl_12
R_vdd    vdd_ic vdd_n1 2
L_vdd    vdd_n1 vdd_n2 2.2n
C_d      vdd_ic vss_ic 3.2n
C_b      vdd_n2 vss_n2 50p
R_vss    vss_ic vss_n1 2
L_vss    vss_n1 vss_n2 2.2n
I_b1     vdd_n2 vss_n2 PULSE (0.01  0.4  10ns 1.0ns 1.0ns 0.03ns 31.25ns)
I_b2     vdd_n2 vss_n2 PULSE (0.01  0.3 ,10ns+t_dl_12 1.0ns 1.0ns 0.01ns 31.25ns)
.ENDS ICEM1_typ
```

- **PWL table**

![PWL table graph](image)
Model Placement
Summary and Conclusion

- **ICEM models** in the actual format are suitable to IBIS 4.1+
 - no model modification needed
 - mathematical function or PWL format
 - parameter for ICEM model tuning are possible, but not desired

- **RLC for package + bonding + die only** in the IBIS-file
 - to avoid double counting
 - better accuracy required

- **Power/GND-Pin assignment for I/O and CORE**
 - [Pin Mapping]

- **BIRD 95.1(2)**

[SI and EMI simulation more accurate by considering the I(t) and Vdd/GND connections]