SSO Simulation with IBIS

Manfred Maurer
manfred.maurer@siemens.com

www.siemens.de/edh
Overview

- Motivation
- SSN with IBIS in 2000
 - Simulation setup
 - BEHAVIOR – model with Voltage-Controlled Current Sources
 - very good concordance with transistor based models
- Table driven kssn-multiplier
 - Multiplier extraction
 - Results HSPICE vs. VCCS-BEHAVIOR
 - Lacking concordance
- Enhanced VCCS-BEHAVIOR
 - Additional RC – Timing coefficient
 - Improved results
- Summary
Acknowledgements

INFINEON TECHNOLOGIES
- HYB18T512160AF
- DDR2 - Memory

TEXAS INSTRUMENTS
- CDCE706
- PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER / MULTIPLIER / DIVIDER
SSO Simulation Setup
(m+1 switching outputs)

Overview

SSN 2000

kssn - table

Enhanced VCCS model

Summary

IBIS Summit Meeting Munich 2006
VCCS-Model enhancement

- A second multiplier for rising \((kssnr)\) and falling \((kssnf)\) edges
- Both multipliers are controlled by the \((Vdd-Vss)\) voltage drop
- Feedback on the *gate source voltage of the output transistors*
- Multiplier generation:
 - Pullup/down V/I-tables as a function of Vdd
 - SSO-V/t-table (Golden Waveform)
VCX16244 SSN analysis results (rising edge)
Enhanced two waveform behavioral model Number of SSO = 6

Overview

SSN 2000

kssn - table

Enhanced VCCS model

Summary

Node OUT: Transistor based Behavioral

Node END: Transistor based Behavioral
kssnr/f Multiplier Generation Method

Overview
SSN 2000
kssn - table
Enhanced VCCS model
Summary

IBIS Summit Meeting Munich 2006
Overview

SSN 2000

kssn - table

Enhanced VCCS model

Summary

kssn rising coefficient extraction
HYB18T512160AF (DDR2) INFINEON

IBIS Summit Meeting Munich 2006
kssn falling coefficient extraction
HYB18T512160AF (DDR2) INFINEON

Overview
SSN 2000
kssn - table
Enhanced VCCS model
Summary

IBIS Summit Meeting Munich 2006
Overview

SSN 2000

kssn - table

Enhanced VCCS model

Summary

IBIS Summit Meeting Munich 2006

kssn falling coefficient extraction (zoom)
HYB18T512160AF (DDR2) INFINEON
Overview

SSN 2000

kssn - table

Enhanced VCCS model

Summary

HYB18T512160AF / INFINEON

kssn rising/falling @ Vdd = 0.5V to 3.6V (1.8V nom.)

Vdd_nom

IBIS Summit Meeting Munich 2006
TI CDCE706 TEXAS INSTRUMENTS
kssn rising/falling @ Vdd = 0.5V to 5V (3.3V nom.)

Overview

SSN 2000

kssn - table

Enhanced VCCS model

Summary

Vdd_nom

slew rate max

slew rate min

IBIS Summit Meeting Munich 2006
SSN 2000

Enhanced VCCS model

Overview

Summary

DDR2 buffer Infineon
Supply voltage drop (L=2x1nH) / Load Tline Zo=50 Ohm

IBIS

VCCS + kssn

Transistor based

w/ pkg

w/o pkg

IBIS Summit Meeting Munich 2006
Overview

SSN 2000

kssn - table

Enhanced VCCS model

Summary

TI CDCE706 / Voltage drop / Rising edge
VCCS-model with kssn table (L=2x3nH)

transistor based model
VCCS + kssn

IBIS / HSPICE @ NO PKG

VCCS + kssn

IBIS Summit Meeting Munich 2006
Overview

SSN 2000

kssn - table

Enhanced VCCS model

Summary

TI CDCE706 Rising edge vs. Vdd drop

Transistor based model

![Graph showing rising edge vs. Vdd drop for TI CDCE706](image)

Vdd=3.3V

Vdd drop

L=1nH ... 9nH

Sig.@Vdd=3.3V

Sig.@Vdd drop

IBIS Summit Meeting Munich 2006
Overview

SSN 2000

kssn - table

Enhanced VCCS model

Summary

TI CDCE706 Falling edge vs. Vdd drop
Transistor based model

Vdd drop
L=1nH ...9nH

Vdd=3.3V

Sig.@Vdd drop

Sig.@Vdd=3.3V
Differences: VCCS 2000 vs. 2006

<table>
<thead>
<tr>
<th></th>
<th>VCCS 2000</th>
<th>VCCS 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition Time</td>
<td>ca. 5ns</td>
<td><500ps</td>
</tr>
<tr>
<td>Operation Point</td>
<td>saturation region</td>
<td>linear region</td>
</tr>
<tr>
<td>Vdd/GND drop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>amplitude</td>
<td>ca. 15% Vdd</td>
<td>ca. 40% Vdd</td>
</tr>
<tr>
<td>width</td>
<td>ca. 7ns</td>
<td>ca. 1ns</td>
</tr>
<tr>
<td>Design of the OUTPUT stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time domains</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Slew rate control</td>
<td>NO/YES</td>
<td>YES</td>
</tr>
<tr>
<td>Vdd-drop Feed back</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Prestage @Vdd_int</td>
<td>NO/YES</td>
<td>YES</td>
</tr>
<tr>
<td>On-die capacitance</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>

Overview

- SSN 2000
- Enhanced VCCS model
- Summary
Improvement with prestage capacitance C_{pre}

- $k_{ssnr}(V_{dd}-V_{ss}) \cdot k_{pu}(t) \cdot I_{pu}(V_{out})$
- $k_{ssnf}(V_{dd}-V_{ss}) \cdot k_{pd}(t) \cdot I_{pd}(V_{out})$

C_{pre}: Vdd-Vss prestage Capacitance

Evaluation:
SPICE simulation using a capacitance bridge

Overview

SSN 2000

kssn - table

Enhanced VCCS model

Summary
Vdd drop improvement with $C_{pre}=30\,pF$

$CDCE706$ with $PKG\ L=2\times3\,nH$ 10 SSO
Vdd drop improvement with $C_{pre}=30\,\text{pF}$

CDCE706 with PKG $L=2\times3\,\text{nH}$ 10 SSO
Enhanced VCCS-Behavior Model with kssn (static) and td_RC (dynamic) coefficients

Enhanced VCCS-Behavior Model
with kssn (static) and td_RC (dynamic) coefficients

- by optimisation through the Vdd_drop @ known L
- by adjustment from I=I(t) table @ L
Vdd drop improvement
DDR2 with PKG L=2x3nH 5 SSO

Overview

SSN 2000

kssn - table

Enhanced VCCS model

Summary
Vdd drop improvement
CDCE706 with PKG L=2x3nH 10 SSO

Overview

SSN 2000

kssn - table

Enhanced VCCS model

Summary
Summary

- With improved IBIS models, SSO can be simulated in a better concordance with transistor based models, IF
 - kssn – table information (BIRD 97.x)
 - current vs. time tables @ known RLC environment (BIRD 95)

- Advantages
 - Signal integrity analysis
 - PDS – Voltage drop
 - Timing simulation

- More investigations have to be done, to evaluate for different technologies, the validity range and the accuracy of the proposed improvement
SSO Simulation with IBIS

Manfred Maurer
manfred.maurer@siemens.com

Questions