Enhanced $\mathcal{M}\pi\log$ Models for Power Integrity Analysis.
Modeling from simulation and measurement, IBIS data extraction, crossvalidation

A. Girardi1, I.S. Stievano2, R. Izzi1, T. Lessio1, F.G. Canavero2, I. Maio2, L. Rigazio2

1Numonyx Italy S.r.l., 2Politecnico di Torino, Italy

Ref. contacts: {antonio.girardi@numonyx.com, igor.stievano@polito.it}
MOCHA, MOdelling and CHAracterization for SiP - Signal and Power Integrity Analysis

(www.mocha.polito.it)

 “Develop reliable modelling and simulation solutions for SiP design verification”

- Participants:
 - Numonyx Italy Srl (Italy) [Coordinator]
 - Politecnico di Torino (Italy)
 - Cadence Design Systems GmbH (Germany)
 - Agilent Technologies (Belgium)
 - Universidade de Aveiro (Portugal),
 - Microwave Characterization Center (France)

- Work Packages
 - WP1, IC power integrity model
 - WP2, IC buffers’ innovative modelling approach
 - WP3, SiP design and verification EDA platform
 - WP4, SiP signal integrity measurement platform

* The research leading to these results has received funding from the European Community's Seventh Framework Programme FP7-ICT-2007-1 under the MOCHA (MOdeling and CHAracterization for SiP - Signal and Power Integrity Analysis) grant n. 216732.
WP2 overview

Objective: Development of accurate and efficient models of digital ICs

- Overcome current limitations of existing models

 e.g., state-of-the-art models allow only for limited power supply variations

- Generate models from measurements & simulations
WP2 achievements (i)

- Availability of the General structure of the extended model for digital buffers
- Procedure for parameter estimation from simulation / measurement
- Model implementation in different formats (HSPICE, ELDO, VERILOG-A,...)
- Application to test cases (proprietary and third party devices) from simulation
WP2 achievements (ii)

Model Accuracy, second test case *(estimation from simulation)*

<table>
<thead>
<tr>
<th></th>
<th>Eye opening</th>
<th>Error</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference (trans. level)</td>
<td>72%</td>
<td>-</td>
<td>773 s</td>
</tr>
<tr>
<td>IBIS</td>
<td>78.8 %</td>
<td>9.5 %</td>
<td>13 s</td>
</tr>
<tr>
<td>Proposed (MπLOG)</td>
<td>73.8 %</td>
<td>2.5 %</td>
<td>31 s</td>
</tr>
</tbody>
</table>

- Improved Accuracy
- High efficiency
WP2 achievements (iii)

- Design two test boards for the characterization of the IC ports of the MOCHA test cases

 e.g., first test case, DQ0 I/O buffer

Device models from transient port voltage and current responses recorded during IC normal operation
WP2 achievements (iv)

- **Tool** for the interactive generation of IC models

→ **Mπlog** ver. 5.3, available at www.emc.polito.it

Guided step-by-step modeling procedure
WP2 achievements (v)

- procedure for the extraction of device characteristics suggested by IBIS from the estimated models
X-Validation (i)

Test case: 512Mb LPDDR third party device, in 70nm technology and clock frequency of 133MHz.

Models:

- Reference Transistor-level
- IBIS
- MPLOG (from simulation)
- MPLOG (from measurements)

<table>
<thead>
<tr>
<th></th>
<th>IBIS</th>
<th>MPLOG (sim)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_COMP</td>
<td>3.1pF</td>
<td>3.045 pF</td>
</tr>
</tbody>
</table>
X-validation (ii)

[Diagram with two graphs:

1. Pulldown graph:
 - X-axis: Voltage (V)
 - Y-axis: Current (mA)
 - Lines: Reference (dashed), MPILOG (sim) (dotted), IBIS (circles)

2. Pullup graph:
 - X-axis: Voltage (VCC-V)
 - Y-axis: Current (mA)
 - Lines: Reference (dashed), MPILOG (sim) (dotted), IBIS (circles)
X-validation (iii)

[GND Clamp]

[POWER Clamp]
X-validation (iv)

[Rising waveform]

[Reference]

[MPILOG (sim)]

[IBIS]

[Falling waveform]
X-validation (v)

...model from real measured data
X-validation (vi)

...model from real measured data

[Rising waveform]

V = \begin{cases}
\text{IBIS (typ)} & \\
\text{IBIS (min)} & \\
\text{IBIS (max)} & \\
\text{Measurements} & \\
\text{MPILOG (meas)} &
\end{cases}

R_{\text{fixture}} = 47 \ \Omega \\
L_{\text{fixture}} = 18 \ \text{nH} \\
C_{\text{fixture}} = 7.4 \ \text{pF} \\
V_{\text{fixture}} = 0\text{V}
Q&A