IBIS Modeling Using Latency Insertion Method (LIM)

José E. Schutt-Ainé

University of Illinois at Urbana-Champaign Jilin Tan, Ping Liu, Feras Al-Hawari, Ambrish Varma

Cadence Design Systems

European IBIS Summit May 16, 2012 Sorrento, Italy

Nonlinear Circuit

How do we solve a simple diode circuit problem?

ECE-Illinois

Graphical method... ... solve transcendental equations

$$V_{out} = V_D$$

$$I_D = I_S \left(e^{V_D / V_T} - 1 \right)$$

$$V_S = RI_D + V_D = RI_D (V_D) + V_D$$

Diode Circuit – Iterative Method

... or use the Newton-Raphson method...

Use:
$$x_{k+1} = x_k - [f'(x_k)]^{-1} f(x_k)$$

 $x^{(k+1)} = x^{(k)} - [f'(x^{(k)})]^{-1} f(x^{(k)})$
 $f(V_D) = \frac{V_D - V_S}{R} + I_S (e^{V_D / V_T} - 1) = 0$
 $f'(V_D) = \frac{1}{R} + \frac{I_S}{V_T} e^{V_D / V_T}$

ECE-Illinois

$$V_{D}^{(k+1)} = V_{D}^{(k)} - \frac{\frac{V_{D}^{(k)} - V_{S}}{R} + I_{S} \left(e^{V_{D}^{(k)}/V_{T}} - 1\right)}{\frac{1}{R} + \frac{I_{S}}{V_{T}} e^{V_{D}^{(k)}/V_{T}}}$$

Where $V_D^{(k)}$ is the value of V_D at the *k*th iteration

Procedure is repeated until convergence to final (true) value of V_D which is the solution. Rate of convergence is quadratic.

Newton Raphson Method (Graphical Interpretation)

ECE-Illinois

Newton Raphson Method

If initial guess is not close enough, NR will lock into oscillations and solution will not converge

Limitations

- IBIS data can be unpredictable
- Transient response requires solution of nonlinear system
- Most simulators use Newton-Raphson (NR) technique combined with modified nodal analysis (MNA)
- NR may not converge

ECE-Illinois

• NR may slow down simulation

Why LIM?

- LIM does not iterate on nonlinear problems
- There is no convergence issue
- MNA has <u>super-linear</u> numerical complexity
- LIM has <u>linear</u> numerical complexity
- LIM uses no matrix formulation
- LIM has no matrix ill-conditioning problems
- LIM is much faster than MNA for large circuits

Latency Insertion Method**

Each branch must have an inductor*

Each node must have a shunt capacitor*

Express branch current in terms of <u>history</u> of adjacent node voltages

Express node voltage in terms of <u>history</u> of adjacent branch currents

* If branch or node has no inductor or capacitor, insert one with very small value

** J. E. Schutt-Ainé, "Latency Insertion Method for the Fast Transient Simulation of Large Networks," IEEE Trans. Circuit Syst., vol. 48, pp. 81-89, January 2001.

ECE-Illinois

LIM: Leapfrog Method

Leapfrog method achieves second-order accuracy, i.e., error is proportional to Δt^2

ECE-Illinois

LIM Algorithm

Represents network as a grid of nodes and branches

Branch structure

Node structure

ECE-Illinois

Discretizes Kirchhoff's current and voltage equations ۲

$$V_{i}^{n+1/2} = \frac{\frac{C_{i}V_{i}^{n-1/2}}{\Delta t} + H_{i}^{n} - \sum_{k=1}^{N_{a}} I_{ik}^{n}}{\frac{C_{i}}{\Delta t} + G_{i}} \qquad I_{ij}^{n+1} = I_{ij}^{n} + \frac{\Delta t}{L_{ij}} \left(V_{i}^{n+1/2} - V_{j}^{n+1/2} - R_{ij}I_{ij}^{n} \right)$$

- Uses "leapfrog" scheme to solve for node voltages and branch currents
- Presence of reactive elements is required to generate latency

ECE-Illinois

LIM is Fast...

Comparison of runtime for LIM and SPICE per 100 time steps.

Circuit	# nodes	# MOSFET	SPICE	LIM
ADDER	36	62	0.0058 s	0.0005 s
VOTER	1709	4243	0.369 s	0.041 s
RAM CKT	4850	13880	1.94 s	0.184 s

... and gets faster as circuit size increases

ECE-Illinois

LIM has NO Convergence Issues

Introduce latency in diode circuit through a small inductor L

... then use colocation and leapfrog:

 $V_{D} \to V_{D}^{n}, V_{D}^{n+1}, V_{D}^{n+2}, \dots$ $I_{D} \to I_{D}^{n-1/2}, I_{D}^{n+1/2}, I_{D}^{n+3/2}, \dots$ with $V_{L}^{n} = L \frac{I^{n+1/2} - I^{n-1/2}}{\Delta t}$

...and if time steps are sufficiently small,

ECE-Illinois

LIM Suffers from Stability Issues ...

IBIS Summit – Sorrento, Italy – May 16, 2012

15

...but they can be controlled...

IBIS Summit – Sorrento, Italy – May 16, 2012

Application of LIM to IBIS

- IBIS Data Processing
- Ku/Kd Extraction
- IBIS Standard Formulation
- LIM-IBIS Formulation
- LIM-IBIS Solutions

- Extension to Gate Modulation Effects
- Conclusion and Future Work

IBIS Data Processing

- 1. Arrange static IV data
- 2. Pulldown data (current vs voltage) \rightarrow I_{pd}, m_{pd} points
- 3. Pullup data (current vs voltage) \rightarrow I_{pu}, m_{pu} points
- 4. Ground clamp data (current vs voltage) \rightarrow I_{gc}, m_{gc} points
- 5. Power clamp data (current vs voltage) \rightarrow I_{pc}, m_{pc} points

18

IBIS Data Processing

- Next Get VT data. VT data is presented as: <u>Rising</u> <u>waveform</u>:
- Voltage versus time for $V_{fix} \text{ low } \rightarrow V_{R1}$, m_{r1} points
- Voltage versus time for V_{fix} high → V_{R2}, m_{r2} points: <u>Falling</u> waveform:
- Voltage versus time for $V_{fix} \text{ low } \rightarrow V_{F1}$, m_{f1} points
- Voltage versus time for V_{fix} high \Rightarrow V_{F2} , m_{f2} points

IBIS Ku/Kd Extraction*

IBIS Summit – Sorrento, Italy – May 16, 2012

Ku/Kd Extraction

We need to extract K_u and K_d Procedure is well documented*

- Pick value V_{comp1}
- Find closest corresponding currents in static IV data
- Set them as I_{pd1} , I_{pu1} , I_{gc1} and I_{pc1}
- Pick value V_{comp2}

ECE-Illinois

- Find closest corresponding currents in static IV data
- Set them as I_{pd2} , I_{pu2} , I_{gc2} and I_{pc2}

* Ying Wang, Han Ngee Tan "The Development of Analog SPICE Behavioral Model Based on IBIS Model", Proceedings of the Ninth Great Lakes Symposium on VLSI, GLS '99.

IBIS Circuit Analysis

2 equations, two unknown system

$$-I_{out1} = K_{u}I_{pu1} + K_{d}I_{pd1} + I_{pc1} + I_{gc1}$$

$$-I_{out2} = K_{u}I_{pu2} + K_{d}I_{pd2} + I_{pc2} + I_{gc2}$$

Rearrange as:

ECE-Illinois

$$K_{u}I_{pu1} + K_{d}I_{pd1} = -I_{out1} - I_{pc1} - I_{gc1} = I_{RHS1}$$
$$K_{u}I_{pu2} + K_{d}I_{pd2} = -I_{out2} - I_{pc2} - I_{gc2} = I_{RHS2}$$

or

$$\begin{bmatrix} I_{pu1} & I_{pd1} \\ I_{pu2} & I_{pd2} \end{bmatrix} \begin{bmatrix} K_u \\ K_d \end{bmatrix} = \begin{bmatrix} I_{RHS1} \\ I_{RHS2} \end{bmatrix}$$
Solve for
 K_u and K_d

Example of Ku and Kd

Rising Waveform

Falling Waveform

IBIS Simulations

Nonlinear system → use Newton-Raphson

CE-Illinois

E(

... or Better: Use a LIM Formulation

IBIS Summit – Sorrento, Italy – May 16, 2012

ECE-Illinois

25

IBIS-LIM Solution

IBIS Summit – Sorrento, Italy – May 16, 2012

Transient Simulation Examples

NR and LIM give same results...

ECE-Illinois

Transient Simulation Examples

... in some cases Newton-Raphson fails to converge...

Handling Gate Modulation Effects (BIRD 98.3)

IBIS Summit – Sorrento, Italy – May 16, 2012

CE-Illinois

29

Gate Modulation Effects (BIRD 98.3)

Large power supply inductance Small decoupling capacitance

 $\begin{array}{l} L_{pu} = 5 \ nH \\ C_{pu} = 0.001 \ nF \end{array}$

ECE-Illinois

Gate Modulation Effects (BIRD 98.3)

IBIS Summit – Sorrento, Italy – May 16, 2012

ECE-Illinois

31

Conclusions

- We demonstrated that LIM can be used to simulate IBISbased circuits with optimum accuracy.
- Because of the inserted latency, LIM does not use an iterative scheme to solve nonlinear equations and thus does not suffer from convergence problems
- LIM-based simulations were successful in instances where the traditional Newton-Raphson technique failed to provide a solution
- LIM is expected to be several orders of magnitude faster for large circuits containing a multitude of IBIS models.

References

[1] J. E. Schutt-Ainé, "Latency Insertion Method for the Fast Transient Simulation of Large Networks," IEEE Trans. Circuit Syst., vol. 48, pp. 81-89, January 2001.

[2] Dmitri Klokotov, and José Schutt-Ainé, "Transient Simulation of Lossy Interconnects using the Latency Insertion Method (LIM)", Proceedings of the 17th Topical Meeting on Electrical Performance of Electronic Packaging (EPEP), pp. 251-254, San Jose, CA, October 2008.

[3] José Schutt-Ainé, "Stability Analysis of the Latency Insertion Method Using a Block Matrix Formulation", Proceedings of EDAPS-08, Seoul, South Korea, December 2008.

[4] J. Schutt-Aine, D. Klokotov, P. Goh, Jilin Tan, F. Al-Hawari, Ping Liu, Wenliang Dai, "Application of the latency insertion method to circuits with blackbox macromodel representation," Proceedings of the 11th Electronics Packaging Technology Conference (EPTC), pp. 92-95, Singapore, December 2009.

[5] P. Goh, J. Schutt-Aine, D. Klokotov, J. Tan, P. Liu, W. Dai, and F. Al-Hawari, "Partitioned latency insertion method with a generalized stability criteria," *IEEE Trans. on Comp., Packaging and Manufacturing Tech.*, vol .1, no. 9, Sept. 2011.

[6] S. Lalgudi and M. Swaminathan, "Analytical stability condition of the latency insertion method for nonuniform GLC circuits," *IEEE Trans. on Circuits and Systems*, vol. 55, no. 9, Sept. 2008.

[7] Ying Wang, Han Ngee Tan "The Development of Analog SPICE Behavioral Model Based on IBIS Model", Proceedings of the Ninth Great Lakes Symposium on VLSI, GLS '99.

[8] P. Tehrani, Y. Chen, and J. Fang, "Extraction of Transient Behavioral Model of Digital I/O Buffers from IBIS," Proceedings of 1996 ECTC Conference, pp1009-1015.

