On-Die Decoupling Model Improvements for IBIS Power Aware Models

Randy Wolff and Aniello Viscardi

Micron Technology

2016 European IBIS Summit

May 11, 2016 Turin, Italy
Outline

- IBIS Power-aware modeling overview
- On-die Decoupling models
- Multi-port Decoupling models
- Example Simulations
- Conclusions
IBIS Power-aware Modeling Overview

- Power Integrity modeling uses [Composite Current], [ISSO PU], [ISSO PD] and an IBIS-ISS on-die decoupling circuit model

- Decoupling model external to IBIS currently

![Decoupling Diagram](image)

* Image from IBIS 6.0 Specification

Variables:
- \(I_{byp} \) - Bypass current
- \(I_{pre} \) - Pre-Driver current
- \(I_{cb} \) - Crow-bar current
- \(I_{term} \) - Termination current (optional)
- \(L_{VDDQ} \) - On-die inductance of I/O Power
- \(R_{VDDQ} \) - On-die resistance of I/O Power
- \(L_{GND} \) - On-die inductance of Ground
- \(R_{GND} \) - On-die resistance of Ground
- \(C_{p+b} \) - Bypass + Parasitic Capacitance
- \(ESR \) - Equivalent Series Resistance for on-die Decap
- \(ESL \) - Equivalent Series Inductance for on-die Decap
On-die Decoupling Models

- SPICE model may have pre-driver circuits on separate power supplies
- May be one common ground on-die
- Decoupling model could include VDDQ, VSSQ, VDD, VSS
- What is needed for IBIS to correlate with SPICE?
Multi-port Decoupling Models

- Decoupling circuits may contain proprietary modeling equations or process data

- A non-proprietary model can be an S-parameter or a broadband SPICE macromodel (of the S-parameter characterization)

- S-parameter port options
 - 1-port: VDDQ with VSSQ reference
 - 2-port: VDDQ, VSSQ, with 0 reference
 - 3 or [4] port: VDDQ, VSSQ, VDD, [VSS], with 0 reference
SPICE Setup Examples for Decoupling Model Creation

- **Buffer Instance in Hi-Z state:**
 - Xbuff ... VDDQ_die VSSQ_die ... Buffer_name

- **Port Definition:**
 - Single Port
 - P1 VDDQ_die VSSQ_die port=1 Z0=50 DC VDDQ
 - Multi Port
 - P1 VDDQ_die 0 port=1 Z0=50 DC VDDQ
 - P2 VSSQ_die 0 port=2 Z0=50 DC 0

- **AC Analysis**
 - .lin sparcalc=1 filename='s_model.sNp' format=touchstone dataformat=ma freqdigit=10 spardigit=10
 - .ac dec 100 1 10e12
Example Simulation 1 – Ideal VDD
Comparing Transistor-level and IBIS Model in SPICE

- $L_{VDD}=0$ (short)
- $L_{VDDQ}=1.25\text{nH}$
- $L_{VSSQ}=1.25\text{nH}$
- $L_{PKG}=1.25\text{nH}$
1-Port vs. 2-Port Models, I(VSSQ) and I(VDDQ)
V(LOAD) and V(VDDQ_die)-V(VSSQ_die)

1-Port

2-Port
Example Simulation 2 – Non-ideal VDD
Comparing Transistor-level and IBIS Model in SPICE

- $L_{VDD}=1.25\,\text{nH}$
- $L_{VDDQ}=1.25\,\text{nH}$
- $L_{VSSQ}=1.25\,\text{nH}$
- $L_{PKG}=1.25\,\text{nH}$
2-Port vs. 3-Port Models, I(VSSQ) and I(VDDQ)
V(LOAD) and V(VDDQ_die)-V(VSSQ_die)
Conclusions

- A 2-port S-parameter (3-terminal macro-model) for on-die decoupling is a better model than a 1-port model for power-aware simulations.
 - This solution requires use of node 0 in the decoupling model.

- Correlating to a SPICE simulation that includes non-ideal supply connections to pre-driver circuits requires extra ports for non-ideal supplies in the decoupling model.

- A multi-port decoupling model is most versatile. Unused ports not connected to a package model should be connected to 0.

- The new IBIS Interconnect BIRD will allow the IBIS-ISS decoupling model to be connected properly to the package model.