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The Starting Point: Macromodeling
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Macromodeling

techniques ሶ𝒘 = 𝑨𝒘 + 𝑩𝒖
𝒚 = 𝑪𝒘+ 𝑫𝒖

Gather I/O data 

from measurements

or Maxwell equation

solution

Obtain a transfer function

representation (Usually in 

terms of S parameters)

Get the state space

and a SPICE netlist

𝐇 𝑠 =
𝐍 𝑠

D(𝑠)

Advantage: allows to perform fast time-domain transient simulations that

includes non-linear components in circuit simulation software 

Example of Application: signal and power integrity analysis of RF systems  



A Step Further: Parameterized Macromodeling
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Our Goal: to obtain compact macromodels able to describe the 

behavior of the system with respect to parameters variations

(geometric quantities, temperature, device operating point…)

ሶ𝒘 = 𝑨(𝝑)𝒘 + 𝑩(𝝑)𝒖
𝒚 = 𝑪(𝝑)𝒘 + 𝑫(𝝑)𝒖

𝐇 𝑠 =
𝐍 𝑠; 𝝑

D(𝑠; 𝝑)
EM Simulations

Parameterized macromodeling

techniques

Model defined over a 

continuous parameter

interval

Advantages: Perform circuit design optimization and worst-case 

scenario analysis faster and directly in circuit simulation software



Parameterized Macromodeling
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Parametric sweep

Multivariate

Rational

Fitting

Stability,

Passivity

Enforcement

Simulation or

Measurement

Multiple S-parameters

SPICE netlist

Parameterized model

State-space

realization

Circuit

synthesis

IN

OUT

.snp

෱𝐇𝑘;𝑚 = ෱𝐇 𝑗𝜔𝑘; 𝝑𝑚
𝑘 = 1,… , 𝐾; 𝑚 = 1,… ,𝑀

𝐇 𝑠 =
𝐍 𝑠; 𝝑

D(𝑠; 𝝑)
ሶ𝒘 = 𝑨(𝝑)𝒘 + 𝑩(𝝑)𝒖
𝒚 = 𝑪(𝝑)𝒘 + 𝑫(𝝑)𝒖



Rational Fitting
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෱𝐇𝑘;𝑚 = ෱𝐇 𝑠𝑘; 𝝑𝑚 ;      for  𝑘 = 1,… ,𝐾; 𝑚 = 1,… ,𝑀

Enforce the fitting

Fix the model structure

𝐇 𝑠; 𝝑 =
𝐍 𝑠; 𝝑

D 𝑠; 𝝑
=

1

D 𝑠; 𝝑

N11 𝑠; 𝝑 ⋯ N1n 𝑠; 𝝑
⋮ ⋱ ⋮

Nm1 𝑠; 𝝑 ⋯ Nmn 𝑠; 𝝑
;

min
𝐍 𝑠𝑘; 𝝑𝑚 − D 𝑠𝑘; 𝝑𝑚 ෱𝐇 𝑠𝑘; 𝝑𝑚

D 𝑠𝑘; 𝝑𝑚 2

2

Nij 𝑠; 𝝑 = 𝒂𝟎 𝝑 + 𝒂𝟏 𝝑 𝒔 +⋯+ 𝒂𝒎 𝝑 𝒔𝒎

D 𝑠; 𝝑 = 𝒃𝟎 𝝑 + 𝒃𝟏 𝝑 𝒔 +⋯+ 𝒃𝒏−𝟏 𝝑 𝒔𝒏−𝟏 + 𝒔𝒏

NON-LINEAR 

LS 

PROBLEM!



Parameterized Sanathanan-Koerner
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Model structure: 𝐇 𝑠; 𝝑 =
𝐍 𝑠; 𝝑

D 𝑠; 𝝑
=
σ𝑛σ𝑙 𝐑𝑛,𝑙 𝜉𝑙 𝝑 𝜑𝑛 𝑠

σ𝑛σ𝑙 𝑟𝑛,𝑙 𝜉𝑙 𝝑 𝜑𝑛 𝑠

Basis Functions:

𝜑𝑛 𝑠 ∶

𝜉𝑙 𝝑 ∶ Chebychev Polynomials

PSK scheme:
𝐷0= 1; for 𝜇 = 1,2,…

min
𝐍𝜇 𝑠𝑘; 𝝑𝑚 − D𝜇 𝑠𝑘; 𝝑𝑚 ෱𝐇 𝑠𝑘; 𝝑𝑚

D𝜇−1 𝑠𝑘; 𝝑𝑚

end

Partial Fractions

Unknown Coefficients

to be found

Known!



PSK Least Squares Problem
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𝐾 ×𝑀:

𝐿:

𝑁:

𝑇:

Available data samples for 

each response

Number of responses

Cardinality of partial fractions

Cardinality of parameter basis

𝐾 ×𝑀

𝑁 × 𝑇 𝑁 × 𝑇

𝑳 𝒅𝒊𝒂𝒈𝒐𝒏𝒂𝒍 𝒃𝒍𝒐𝒄𝒌𝒔

Flops requirements: 𝐹𝑙𝑃𝑆𝐾 ∝ 𝐾𝑀𝑁2𝑇2𝐿3

Memory requirements:𝐸𝑃𝑆𝐾 = 𝐾𝑀𝐿𝑁𝑇(𝐿 + 1)

CUBIC!

Denominator 

quantities
Numerator 

quantities

In white: Zeros



An Example: 4-Port System
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Accuracy looks ok 

but…

10 PSK iteration required 2140 seconds 

on a server machine (2.2 GHz) and 2.63 

Gb of memory!

𝝑



Deus Ex Algebra: QR factorization
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We will exploit the reduced formulation…

𝑚 𝑟𝑜𝑤𝑠

𝑛 𝑐𝑜𝑙𝑢𝑚𝑛𝑠

𝑛 𝑐𝑜𝑙𝑢𝑚𝑛𝑠

𝑛 𝑟𝑜𝑤𝑠

𝑚 𝑟𝑜𝑤𝑠

The QR factorization finds an 

orthonormal basis (Q columns) that

span the column space of A through the 

coefficients embedded in R

𝑛 𝑐𝑜𝑙𝑢𝑚𝑛𝑠

𝐴 𝑄

𝑅

𝐴 = 𝑄𝑅

𝑄𝐻𝑄 = 𝐼

In our case: 𝒎 ≫ 𝒏

𝑅 is a small upper

triangular matrix



System Decoupling
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We start from the PSK LS system…

𝑨𝒙 = 𝒃



System Decoupling
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…and we try to decouple the responses.

𝑨𝟏
𝒙𝟏
𝒙𝒅

= ෲ𝒉𝟏 𝑨𝟐
𝒙𝟐
𝒙𝒅

= ෲ𝒉𝟐

𝑨𝟑
𝒙𝟑
𝒙𝒅

= ෲ𝒉𝟑 𝑨𝟒
𝒙𝟒
𝒙𝒅

= ෲ𝒉𝟒



System Decoupling
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𝑨𝟏
𝒙𝟏
𝒙𝒅

= ෲ𝒉𝟏 𝑨𝟐
𝒙𝟐
𝒙𝒅

= ෲ𝒉𝟐

𝑨𝟑
𝒙𝟑
𝒙𝒅

= ෲ𝒉𝟑 𝑨𝟒
𝒙𝟒
𝒙𝒅

= ෲ𝒉𝟒

Denominator 

unknowns are 

still common 

to all the 

responses!



Denominator Responses Isolation
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We perform the QR factorizations of the 

decoupled regressors…

𝑸𝟐𝑹𝟐
𝒙𝟐
𝒙𝒅

= ෲ𝒉𝟐

𝑸𝟑𝑹𝟑
𝒙𝟑
𝒙𝒅

= ෲ𝒉𝟑 𝑸𝟒𝑹𝟒
𝒙𝟒
𝒙𝒅

= ෲ𝒉𝟒

𝑸𝟏𝑹𝟏
𝒙𝟏
𝒙𝒅

= ෲ𝒉𝟏



Denominator Responses Isolation
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…and we project the known terms on the 

new orthonormal basis.

𝑹𝟐
𝒙𝟐
𝒙𝒅

= 𝑸𝟐
𝑯ෲ𝒉𝟐

𝑹𝟑
𝒙𝟑
𝒙𝒅

= 𝑸𝟑
𝑯ෲ𝒉𝟑 𝑹𝟒

𝒙𝟒
𝒙𝒅

= 𝑸𝟒
𝑯ෲ𝒉𝟒

𝑹𝟏
𝒙𝟏
𝒙𝒅

= 𝑸𝟏
𝑯ෲ𝒉𝟏



Denominator Responses Isolation
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We observe how the last rows of each 

regressor are now related only to the 

denominator…

𝑹𝟏
𝒙𝟏
𝒙𝒅

=
𝒃𝟏
𝒃𝒅𝟏

𝑹𝟐
𝒙𝟐
𝒙𝒅

=
𝒃𝟐
𝒃𝒅𝟐

𝑹𝟑
𝒙𝟑
𝒙𝒅

=
𝒃𝟑
𝒃𝒅𝟑

𝑹𝟒
𝒙𝟒
𝒙𝒅

=
𝒃𝟒
𝒃𝒅𝟒



Denominator Responses Isolation

16

We observe how the last rows of each 

regressor are now related only to the 

denominator…

𝑹𝟏
𝒙𝟏
𝒙𝒅

=
𝒃𝟏
𝒃𝒅𝟏

𝑹𝟐
𝒙𝟐
𝒙𝒅

=
𝒃𝟐
𝒃𝒅𝟐

𝑹𝟑
𝒙𝟑
𝒙𝒅

=
𝒃𝟑
𝒃𝒅𝟑

𝑹𝟒
𝒙𝟒
𝒙𝒅

=
𝒃𝟒
𝒃𝒅𝟒



Denominator Least Squares Problem
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… so we build a single LS problem to solve 

for the denominator unknowns

𝑹𝒅𝒙𝒅 = 𝒃𝒅



Achieve the Diagonal Block Form
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We consider again the initial system …

𝑨𝒙 = 𝒃



Achieve the Diagonal Block Form
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…and exploit the found coefficients to 

eliminate the columns that couple the 

responses



Achieve the Diagonal Block Form
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…and exploit the found coefficients to 

eliminate the columns that couples the 

responses



Achieve the Diagonal Block Form
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…and exploit the found coefficients to 

eliminate the columns that couples the 

responses



Achieve the Diagonal Block Form
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…and exploit the found coefficients to 

eliminate the columns that couples the 

responses

𝑨𝒏𝒙𝒏 = 𝒃𝒏



Achieve the Diagonal Block Form
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𝑨𝒏𝑿𝒏 = 𝑩𝒏

We solve a multiple right-hand side LS 

problem and we are done!



Computational Requirements of the Fast-PSK
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Dominated by the QR factorization that we perform over

each decoupled response…

2𝐾 ×𝑀

𝑁 × 𝑇

𝐹𝑙𝑄𝑅 = 2𝑚𝑛2
In our case…

𝐹𝑙𝐹𝑃𝑆𝐾 ∝ 𝐾𝑀𝑁2𝑇2 × 𝐿

The scaling with the 

responses is now linear!



Memory Requirements of the FPSK

25

𝑁 × 𝑇

𝑁 × 𝑇
For the denominator:

𝐸𝐷𝑒𝑛 = 𝑁2𝑇2𝐿 + 𝑁𝑇𝐿

For the numerator:

𝐾𝑀

𝑁 × 𝑇

𝐸𝑁𝑢𝑚 = 𝐾𝑀𝑁𝑇𝐿 + 𝐾𝑀𝐿



A Test Case: Coupled Transmission Lines
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A 16-port 

system

Free parameter: length

of the coupling

We modeled the same

system with a number

of coupled conductors

ranging from 1 to 18 to 

test the port scaling of 

time requirements.



Accuracy of the Fitting (12-port case) 
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Accuracy is good for 

non-attenuating

responses…

…fair for highly

attenuating ones!



Minimization of the Relative Error
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Achieved through a weighting scheme…

rk,m
i =

𝑁𝑖 𝑠𝑘;𝝑𝑚 −D 𝑠𝑘;𝝑𝑚 ෱ℎ𝑖𝑘,𝑚 𝑠𝑘;𝝑𝑚

D 𝑠𝑘;𝝑𝑚 ෱ℎ𝑖𝑘,𝑚
𝛽

2

For every data sample and for every i-th response, 

minimize…

Normalization

A free parameter 𝛽 allows tuning  

the fitting procedure 
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Resulting Fitting on a Two Parameters Example



Other Examples Comparisons

30

We compare the time requirements over other 14 test examples



Other Examples Comparisons
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We compare the time requirements over other 14 test examples

30X speed up!



Conclusions and Further Improvements
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We applied a decouple-and-compress procedure to the 

PSK algorithm that grants:
• Linear complexity scaling with the number of responses to be 

modeled

• Major reduction in memory requirements

Additionally we allow:
• Possibility to model high dynamic range systems

• Guaranteed uniformly stable models

Further Improvement: the algorithm is suitable to be 

easily parallelized.

In the next

presentation


