On Automated Generation of Behavioral Parameterized Macromodels Part I: Algorithmic aspects

T. Bradde, S. Grivet-Talocia, M. De Stefano, A. Zanco

Dept. of Electronics and Telecommunications Politecnico di Torino, Italy

European IBIS Summit, 25/05/2018, Brest, France

The Starting Point: Macromodeling

Advantage: allows to perform fast time-domain transient simulations that includes non-linear components in circuit simulation software

Example of Application: signal and power integrity analysis of RF systems

A Step Further: Parameterized Macromodeling

Our Goal: to obtain compact macromodels able to describe the behavior of the system with respect to parameters variations (geometric quantities, temperature, device operating point...)

Parameterized Macromodeling

emc group

Rational Fitting

Fix the model structure $\mathbf{H}(s;\boldsymbol{\vartheta}) = \frac{\mathbf{N}(s;\boldsymbol{\vartheta})}{\mathbf{D}(s;\boldsymbol{\vartheta})} = \frac{1}{\mathbf{D}(s;\boldsymbol{\vartheta})} \begin{pmatrix} \mathbf{N}_{11}(s;\boldsymbol{\vartheta}) & \cdots & \mathbf{N}_{1n}(s;\boldsymbol{\vartheta}) \\ \vdots & \ddots & \vdots \\ \mathbf{N}_{m1}(s;\boldsymbol{\vartheta}) & \cdots & \mathbf{N}_{mn}(s;\boldsymbol{\vartheta}) \end{pmatrix};$ $N_{ii}(s; \vartheta) = a_0(\vartheta) + a_1(\vartheta)s + \dots + a_m(\vartheta)s^m$ $D(s; \boldsymbol{\vartheta}) = \boldsymbol{b}_0(\boldsymbol{\vartheta}) + \boldsymbol{b}_1(\boldsymbol{\vartheta})\boldsymbol{s} + \dots + \boldsymbol{b}_{n-1}(\boldsymbol{\vartheta})\boldsymbol{s}^{n-1} + \boldsymbol{s}^n$ Enforce the fitting $\breve{\mathbf{H}}_{k:m} = \breve{\mathbf{H}}(s_k; \boldsymbol{\vartheta}_m); \quad for \quad k = 1, \dots, K; \ m = 1, \dots, M$ $\min \left\| \frac{\mathbf{N}(s_k; \boldsymbol{\vartheta}_m) - \mathbf{D}(s_k; \boldsymbol{\vartheta}_m) \mathbf{H}(s_k; \boldsymbol{\vartheta}_m)}{\mathbf{D}(s_k; \boldsymbol{\vartheta}_m)} \right\|^2$ **NON-LINEAR** LS **PROBLEM!**

Parameterized Sanathanan-Koerner

PSK Least Squares Problem

An Example: 4-Port System

10 PSK iteration required 2140 seconds on a server machine (2.2 GHz) and 2.63 Gb of memory!

Deus Ex Algebra: QR factorization

We will exploit the reduced formulation...

eme aroup

System Decoupling

We start from the PSK LS system...

Ax = b

System Decoupling

...and we try to decouple the responses.

eme group

System Decoupling

We perform the QR factorizations of the decoupled regressors...

eme ocolle

...and we project the known terms on the new orthonormal basis.

We observe how the last rows of each regressor are now related only to the denominator...

We observe how the last rows of each regressor are now related only to the denominator...

Denominator Least Squares Problem

 $R_d x_d = b_d$

... so we build a single LS problem to solve for the denominator unknowns

Ax = b

We consider again the initial system ...

emc group

...and exploit the found coefficients to eliminate the columns that couple the responses

...and exploit the found coefficients to eliminate the columns that couples the responses

...and exploit the found coefficients to eliminate the columns that couples the responses

...and exploit the found coefficients to eliminate the columns that couples the responses

 $A_n X_n = B_n$

We solve a multiple right-hand side LS problem and we are done!

Computational Requirements of the Fast-PSK

Dominated by the QR factorization that we perform over each decoupled response...

Memory Requirements of the FPSK

A Test Case: Coupled Transmission Lines

A 16-port system

Free parameter: length of the coupling

emc group

We modeled the same system with a number of coupled conductors ranging from 1 to 18 to test the port scaling of time requirements.

Accuracy of the Fitting (12-port case)

Accuracy is good for non-attenuating responses...

...fair for highly attenuating ones!

Minimization of the Relative Error

Achieved through a weighting scheme...

For every data sample and for every i-th response, minimize...

$$r_{k,m}^{i} = \left| \frac{N^{i}(s_{k};\vartheta_{m}) - D(s_{k};\vartheta_{m})\tilde{h}^{i}{}_{k,m}(s_{k};\vartheta_{m})}{D(s_{k};\vartheta_{m})} \right|^{2}$$
Normalization
A free parameter β allows tuning
the fitting procedure

Resulting Fitting on a Two Parameters Example

POLITECNICO DI TORINO

29

emc group

Other Examples Comparisons

We compare the time requirements over other 14 test examples

Time Requirements Comparison

Other Examples Comparisons

We compare the time requirements over other 14 test examples

Time Requirements Comparison

POLITECNICO DI TORINO

Conclusions and Further Improvements

We applied a decouple-and-compress procedure to the PSK algorithm that grants:

- Linear complexity scaling with the number of responses to be modeled
- Major reduction in memory requirements

Additionally we allow:

- Possibility to model high dynamic range systems
- Guaranteed uniformly stable models

In the next presentation

Further Improvement: the algorithm is suitable to be easily parallelized.