

Time-Domain Macromodel Extraction

Bob Ross, Teraspeed Labs, USA bob@teraspeedlabs.com

European Virtual IBIS Summit (with Virtual SPI2021) May 12, 2021

Agenda

- Goals
- Preliminaries and references
- Mathematical identities for time-domain extraction
- Laplace transform extraction flow
- Duality
- Last column mathematics for companion matrix functions
- Adding constraints
- Conclusions
- References

Goals

- Goal Low-order Laplace transform network function extraction from time-domain measurements (or simulations) as a ratio of polynomials in s
 - Macromodel generation
 - Noisy measurements
 - Uncoupled networks
 - Least squared error steepest descent algorithm
- Show some not so well-known mathematical identities
 - o **Duality**
 - Last column mathematics for functions of companion matrices
- Based on original correspondence 1969 1972 with Janez Valand (Yugoslavia/Croatia) and actual product implementation (1990's)
- Derivations and proofs not shown
 - Proofs based on power series expansions and companion matrix relationships

Special Notation - EquationsLaplace Transform
$$X(s) = \frac{a_{n-1}s^{n-1} + \dots + a_0}{s^n + b_{n-1}s^{n-1} + \dots + b_0}$$
,Differential Equation $x^n(t) + b_{n-1}x^{n-1}(t) + \dots + b_0x(t) = 0$
initial conditions, $x(0), \dots, x^{n-1}(0)$,Difference Equation $x_n(t) + d_{n-1}x_{n-1}(t) + \dots + d_0x_0(t) = 0$
initial conditions, $x_0(0), \dots, x_{n-1}(0)$,Z Transform $Z(z) = \frac{z(c_{n-1}z^{n-1} + \dots + d_0)}{z^n + d_{n-1}z^{n-1} + \dots + d_0}$.

Conversions and Responses

Differential					Difference							
Equations						Equations						
$\mathbf{X}(\dagger) = [x^{0}(t), x^{1}(t), \cdots, x^{n-1}(t)]^{T},$						$\mathbf{Z}(\dagger) = [x_0(t), x_1(t), \cdots, x_{n-1}(t)]^T$						
$\mathbf{a} = \left[a_{n-1}, \cdots, a_0\right]^T,$						$\mathbf{c} = \left[\boldsymbol{c}_{n-1} \cdots \boldsymbol{c}_0 \right]^T$						
B =	$\begin{bmatrix} 1\\b_{n-1}\\\vdots\\b_2\\b \end{bmatrix}$	0 1 : b ₃	···· ··· ···	0 0 : 1	0 0 : 0 1	D =	$\begin{bmatrix} 1\\ d_{n-1}\\ \vdots\\ d_2 \end{bmatrix}$	0 1 : d3	···· ··· ··.	0 0 : 1	0 0 : 0	
	Bx (0)	02		0 _{n-1}	1]	c = [Dz(0)	<i>u</i> ₂		α _{n-1}	1]	

,

Recursive Taylor Series (Repeat b and c) a) Initialize: *i* = 1, ..., *n*-1 $x(0) = a_{n-1} \qquad x^{i}(0) = a_{n-1-i} - \sum_{j=0}^{i-1} b_{n-i-j} x^{j}(0)$ b) Extend: $i = n, \dots, p$ $x^{i}(t) = -\sum_{i=0}^{n-1} b_{i} x^{i-n-j}(t)$ c) Next time step: i = 0, ..., n-1 (Taylor series) $x^{i}(t+T) = \sum_{j=i}^{p} x^{j}(t) \frac{T^{j-i}}{(i-i)!}$

R. I. Ross, "Evaluating the Transient Response of a Network Function," Proc. IEEE, vol.55, pp. 615-616, May 1967

Differential Difference Eq'n Sensitivities Eq'n Sensitivities

$$\begin{split} \left[\frac{\partial x(t)}{\partial c_0}, \frac{\partial x(t)}{\partial c_1}, \dots, \frac{\partial x(t)}{\partial c_{n-1}} \right]^T &= \\ \left[\frac{\partial x(t)}{\partial c_0}, \frac{\partial x_1(t)}{\partial c_0}, \dots, \frac{\partial x_{n-1}(t)}{\partial c_0} \right]^T \\ \left[\frac{\partial x(t)}{\partial d_0}, \frac{\partial x(t)}{\partial d_1}, \dots, \frac{\partial x(t)}{\partial d_{n-1}} \right]^T &= \\ \left[\frac{\partial x(t)}{\partial d_0}, \frac{\partial x_1(t)}{\partial d_0}, \dots, \frac{\partial x_{n-1}(t)}{\partial d_0} \right]^T \\ x_j(t) &= x(t+jT), \ j = 0, \dots, n-1 \\ \frac{\partial x_i(t)}{\partial c_j \partial d_k} &= \frac{\partial x_{i+j+k}(t)}{\partial c_0 \partial d_0} \end{split}$$

Laplace Transform Extraction (T.S.)

Teraspeed Labs

Initialization and Updates

- Similar flow for difference equations (Z-transform)
 - 2 cycles of unconstrained difference equation optimization to get Laplace transform starting coefficients
- Coefficient updates
 - Standard gradient methods by step size estimation: slow, inefficient
 - Other methods tried including Modified Gauss–Newton method and Linear fit algorithms documented in the literature gave faster convergence
- Last column mathematics used next
- Constraints implemented in the best fit solution
- Last step solve for poles and zeros (not needed during the optimization process)

Last Column Mathematics for Functions of the Companion Matrix

 $\begin{aligned} x(t+T) &= M(T)x(t) \\ M(T) &= \begin{bmatrix} m_{1,1} & \cdots & m_{1,n} \\ \vdots & \ddots & \vdots \\ m_{n,1} & \cdots & m_{n,n} \end{bmatrix} \\ x(t+T) &= M(T)x(t) = M(T)B^{-1}a = \\ M(T)B^{-1}a &= \begin{bmatrix} m_{n,n} & \cdots & m_{1,n} \\ \vdots & \ddots & \vdots \\ m_{2n-1,n} & \cdots & m_{n,n} \end{bmatrix} \begin{bmatrix} a_{n-1} \\ \vdots \\ a_0 \end{bmatrix} \\ m_{i,n} &= -\sum_{i=0}^{n-1} b_i m_{i+i-n,n}, \ i = n+1, \cdots, 2n-1 \end{aligned}$

Last column of state transition matrix becomes numerator sensitivity values: $\frac{\partial x(t)}{\partial a_{i-1}} = m_{i,n}$

Multiplication Algorithm

$$W(k + 1) = W(k)V$$

$$v_{i} = \sum_{j=i+1}^{n} b_{j} v_{j-i,n}, i = 0, \dots, n-1$$

$$W_{i,n}(k) = -\sum_{j=0}^{n} b_{j} w_{i+j-n,n}(k), i = n+1, \dots, 2n-1$$
Extend
$$w_{i,n}(k + 1) = \sum_{j=0}^{n-1} v_{j} w_{i+j,n}(k), i = 1, \dots, n$$
New last column result

R. Ross, "Efficient Method to Multiply Successively Functions of the Companion Matrix, and Applying this Method to Evaluate Transient Response," Conference *Record, Fifth Asilomar Conference on Circuits and Systems*, Pacific Grove, California, pp. 261-265, Nov. 1971

Some Last Column Mathematics References

- W. E. Thomson, "Evaluation of Transient Response," *Proc. IEEE*, Nov. 1966, pp.1584
 - Several relationships between state transition matrix elements include last-column relationships
 - Relationships can be applied to any function of a companion matrix
- J. Valand, "Calculation of Transient Response," *Electron. Letters*, vol.4, June 28, 1969, p. 260.
 - A coefficients and last column of state transition matrix used to calculate transient response

Characteristic Equation

- Cayley-Hamilton Theorem a matrix satisfies its own characteristic equation
- Computation of characteristic equations:
 - Based on built in mathematical functions
 - Or based on calculating traces (sum of diagonal terms) of powers of M or L

Diff		Difference							
Equ		Equation $E = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \\ -d_0 & -d_1 & \cdots & -d_{n-1} \end{bmatrix}$ $ \lambda -L =$							
<i>X</i> I-N	∧ =					0	1		0 7
λ^n	$+ d_{n-1}$	$\lambda^{n-1} +$	····+	$d_0 = 0$		0	0		0
					Ε =	:	÷		÷
				•		0	0		1
	0 0 :	1		0]		$-d_0$	$-d_1$		$-d_{n-1}$
	0	0	•••	0					
Α =	:	÷		:	<i>λ</i> -	L =			
	0	0	····	1	Ľ	$^{n} + b_{n-1}$	$_{1}\lambda^{n-1} +$	· • • • +	$b_0 = 0$
	$-b_0$	$-b_1$	•••	$-b_{n-1}$					

Trace Calculation: for Differential to Difference Equations

$$T_{k} = \sum_{j=1}^{n} j \, b_{j} \, m_{j,n}(kT) \, , k = 1, \cdots, n$$

$$\begin{bmatrix} T_{1} \\ T_{2} \\ \vdots \\ T_{n} \end{bmatrix} = -\begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ T_{1} & 2 & \cdots & 0 & 0 \\ \vdots & T_{1} & \ddots & \vdots & \vdots \\ T_{n-2} & \vdots & \ddots & n-1 & 0 \\ T_{n-1} & T_{n-2} & \cdots & T_{1} & n \end{bmatrix} \begin{bmatrix} d_{n-1} \\ d_{n-2} \\ \vdots \\ d_{0} \end{bmatrix}$$

Simplified by using last column mathematics Similar mathematics for Difference to Differential Equations

Lofti Zedeh, Charles Desoer, *Linear System Theory: The State Space Approach*, 1963, pp. 304-305

Maxime Böcher, Introduction to Higher Algebra, 1922, p. 297

Available Constraints

- Denominator degree (number of poles)
- Numerator degree (number of zeros, where lower degree produces less leading edge ripple)
- Set t_s start value, DC offset (y₀)
- Minimum and maximum frequencies for log frequency domain plots
- Initial value
- Final value

Constraints (Oscilloscope Step and Impulse Response Extractions)

Constraints – Maximally Flat Envelope Delay Networks

Conclusions

- Early (1970's) algorithm outlined for physical measurement-based time-domain extraction
- Most calculations done in place to save memory
- Most calculations used last-column matrix mathematics
- Many subroutines worked in both the difference equation and differential equation domains
- Laplace transform formulation allows practical constraints to be implemented
- Result is a Laplace transform as a polynomial ratio as N(s)/D(s) from a time-domain response

European IBIS Summits www.ibis.org/summits/

- J. E. Schutt-Ainé, "IBIS-Compatible Macromodel and Interconnect Simulation Techniques" (2018)
- T. Bradde, S. Grivet-Talocia, M. De Stefano, A. Zanco, "On Automated Generation of Behavioral Parameterized Macromodels, Part I: Algorithmic Aspects" (2018)
- M. De Stefano, S. Grivet-Talocia, T. Bradde, A. Zanco, "On Automated Generation of Behavioral Parameterized Macromodels, Part II: SPICE Equivalents and Applications" (2018)
- A. Zanco, E. Fevola, S. Grivet-Talocia, T. Bradde, M. De Stefano, "An Adaptive algorithm for Fully Automated Extraction of Passive Parameterized Macromodels" (2019)
- B. Ross, "Continuous and Discrete Modeling for IBIS-AMI (2011)
- B. Ross, "Time Response Utility" (2011 and .xls utility uploaded)

Other References and Implementations

- S. Grivet-Talocia, B. Gustavsen, Passive Macromodeling, Theory and Applications, Wiley, 2016
- J. Cadzow, "Recursive Digital Filter Synthesis via Gradient Based Algorithms," IEEE Transactions on Audio and Electroacoustics, Oct. 1976 (difference equation duality)
- B. Ross, "Taylor Series Duality," Proc. 7th IEEE Workshop of Signal Propagation on Interconnects, Siena, Italy, May 11-14, 2003, pp. 97-100

EPEPS2014 – Multnomah Falls, OR

