部S

Time-Domain Macromodel Extraction

Bob Ross, Teraspeed Labs, USA bob@teraspeedlabs.com

European Virtual IBIS Summit (with Virtual SPI2021)

May 12, 2021

Agenda

- Goals
- Preliminaries and references
- Mathematical identities for time-domain extraction
- Laplace transform extraction flow
- Duality
- Last column mathematics for companion matrix functions
- Adding constraints
- Conclusions
- References

Goals

- Goal - Low-order Laplace transform network function extraction from time-domain measurements (or simulations) as a ratio of polynomials in s
- Macromodel generation
- Noisy measurements
- Uncoupled networks
- Least squared error steepest descent algorithm
- Show some not so well-known mathematical identities
- Duality
- Last column mathematics for functions of companion matrices
- Based on original correspondence 1969 - 1972 with Janez Valand (Yugoslavia/Croatia) and actual product implementation (1990's)
- Derivations and proofs not shown
- Proofs based on power series expansions and companion matrix relationships

Special Notation - Equations

Laplace Transform

Differential Equation

Difference Equation

Z Transform

$$
X(s)=\frac{a_{n-1} s^{n-1}+\cdots+a_{0}}{s^{n}+b_{n-1} s^{n-1}+\cdots+b_{0}}
$$

$$
x^{n}(t)+b_{n-1} x^{n-1}(t)+\cdots+b_{0} x(t)=0
$$

$$
\text { initial conditions, } x(0), \cdots, x^{n-1}(0)
$$

$$
x_{n}(t)+d_{n-1} x_{n-1}(t)+\cdots+d_{0} x_{0}(t)=0
$$

initial conditions, $x_{0}(0), \cdots, x_{n-1}(0)$,
$Z(z)=\frac{z\left(c_{n-1} z^{n-1}+\cdots+c_{0}\right)}{z^{n}+d_{n-1} z^{n-1}+\cdots+d_{0}}$.

Conversions and Responses

Differential

Difference

Equations $d \mathbf{x}(t) / d t=\mathbf{A x}(t)$

$$
\mathbf{A}=\left[\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1 \\
-b_{0} & -b_{1} & \cdots & -b_{n-1}
\end{array}\right]
$$

$$
\begin{aligned}
& \mathbf{x}(t+T)=\mathbf{M} \mathbf{x}(t) \\
& \mathbf{M}=\exp (\mathbf{A} T)
\end{aligned}
$$

Equations

$$
\mathbf{z}(t+T)=\mathbf{E z}(t)
$$

$$
\mathbf{E}=\left[\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1 \\
-d_{0} & -d_{1} & \cdots & -d_{n-1}
\end{array}\right]
$$

Companion Matrices

$$
\begin{aligned}
& d \mathbf{z}(t) / d t=\mathbf{L z}(t) \\
& \mathbf{E}=\exp (\mathbf{L} T) \\
& \mathbf{L}=\ln (\mathbf{E}) / T
\end{aligned}
$$

Differential

Difference

Equations

Equations

$$
\begin{array}{ll}
\mathbf{x}(\dagger)=\left[x^{0}(t), x^{1}(t), \cdots, x^{n-1}(t)\right]^{T}: & \mathrm{z}(\dagger)=\left[x_{0}(t), x_{1}(t), \cdots, x_{n-1}(t)\right]^{T} \\
\mathbf{a}=\left[a_{n-1}, \cdots, a_{0}\right]^{T}: \\
\mathbf{B}=\left[\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
b_{n-1} & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
b_{2} & b_{3} & \cdots & 1 & 0 \\
b_{1} & b_{2} & \cdots & b_{n-1} & 1
\end{array}\right] & \mathbf{C}=\left[c_{n-1} \cdots c_{0}\right]^{T} \\
\mathbf{a}=\operatorname{Bx}(0)
\end{array}
$$

Recursive Taylor Series (Repeat b and c)

a) Initialize: $i=1, \ldots, n-1$

$$
x(0)=a_{n-1} \quad x^{i}(0)=a_{n-1-i}-\sum_{j=0}^{i-1} b_{n-i-j} x^{j}(0)
$$

b) Extend: $i=n, \ldots, p$

$$
x^{i}(t)=-\sum_{j=0}^{n-1} b_{j} x^{i-n-j}(t)
$$

c) Next time step: $i=0, \ldots, n-1 \quad$ (Taylor series)

$$
x^{i}(t+T)=\sum_{j=i}^{p} x^{j}(t) \frac{T^{j-i}}{(j-i)!}
$$

R. I. Ross, "Evaluating the Transient Response of a Network Function," Proc. IEEE, vol.55, pp. 615-616, May 1967

Differential

Difference

Eq'n Sensitivities Eq'n Sensitivities

$$
\frac{\partial x^{i}(t)}{\partial a_{j} \partial b_{k}}=\frac{\partial x^{i+j+k}(t)}{\partial a_{0} \partial b_{0}}
$$

$$
\frac{\partial x_{i}(t)}{\partial c_{j} \partial d_{k}}=\frac{\partial x_{i+j+k}(t)}{\partial c_{0} \partial d_{0}}
$$

Laplace Transform Extraction (T.S.)

Expanded on next slide

$$
X(s)=\frac{a_{n-1} s^{n-1}+\cdots+a_{0}}{s^{n}+b_{n-1} s^{n-1}+\cdots+b_{0}}
$$

$$
\begin{aligned}
& x(0)=a_{n-1} \\
& x^{i}(0)=a_{n-1-i}-\sum_{j=1}^{i} b_{n-j} x^{i-j}(0), i=1, \cdots, n-1 \\
& \frac{\partial x^{i}(0)}{\partial a_{0}}=0, i=0, \cdots, n-2, \quad \frac{\partial x^{n-1}(0)}{\partial a_{0}}=1 \\
& \frac{\partial x^{i}(0)}{\partial b_{0}}=0, i=0, \cdots, n-1
\end{aligned}
$$

Higher order terms
$x^{i}(t)=-\sum_{j=0}^{n-1} b_{j} x^{i-n+j}(t), i=n, \cdots, P$
$\frac{\partial x^{i}(t)}{\partial a_{0}}=-\sum_{j=0}^{n-1} b_{j} \frac{\partial x^{i-n+j}(t)}{\partial a_{0}}, i=n, \cdots, P$
$\frac{\partial x^{i}(t)}{\partial b_{0}}=-x^{i-n}(t)-\sum_{j=0}^{n-1} b_{j} \frac{\partial x^{i-n+j}(t)}{\partial b_{0}}, i=n, \cdots, P$

End test - NO Update $a_{i} \& b_{i}$

New Err \& gradient

Next $\mathbf{x}\left(t_{j}\right)$
state with
$T=t_{j}-t_{j-1}$

Initialize
Err terms

Higher order terms

Update Err terms for next $\mathrm{x}\left(t_{j}\right)$ state

$$
\begin{aligned}
& E r r=\sum_{j=0}^{K}\left[x\left(t_{j}\right)-\hat{x}\left(t_{j}\right)\right]^{2} \\
& \frac{\partial E r r}{\partial a_{i}}=2 \sum_{j=0}^{K}\left[x\left(t_{j}\right)-\hat{x}\left(t_{j}\right)\right] \frac{\partial x^{i}\left(t_{i}\right)}{\partial a_{0}}, i=0, \cdots, n-1 \\
& \frac{\partial E r r}{\partial b_{i}}=2 \sum_{j=0}^{K}\left[x\left(t_{j}\right)-\hat{x}\left(t_{j}\right)\right] \frac{\partial x^{i}\left(t_{i}\right)}{\partial b_{0}}, i=0, \cdots, n-1
\end{aligned}
$$

$$
\begin{aligned}
& x^{i}(t+T)=\sum_{j=i}^{p} x^{j}(t) \frac{T^{j-i}}{(j-i)!}, i=0, \cdots, n-1 \\
& \frac{\partial x^{i}(t+T)}{\partial a_{0}}=\sum_{j=i}^{p} \frac{\partial x^{j}(t)}{\partial a_{0}} \frac{T^{j-i}}{(j-i)!}, i=0, \cdots, n-1 \\
& \frac{\partial x^{i}(t+T)}{\partial b_{0}}=\sum_{j=i}^{p} \frac{\partial x^{j}(t)}{\partial b_{0}} \frac{T^{j-i}}{(j-i)!}, i=0, \cdots, n-1
\end{aligned}
$$

Initialization and Updates

- Similar flow for difference equations (Z-transform)
- 2 cycles of unconstrained difference equation optimization to get Laplace transform starting coefficients
- Coefficient updates
- Standard gradient methods by step size estimation: slow, inefficient
- Other methods tried including Modified Gauss-Newton method and Linear fit algorithms documented in the literature gave faster convergence
- Last column mathematics used - next
- Constraints implemented in the best fit solution
- Last step - solve for poles and zeros (not needed during the optimization process)

Last Column Mathematics for

Functions of the Companion Matrix

$$
\begin{aligned}
& x(t+T)=M(T) x(t) \\
& M(T)=\left[\begin{array}{ccc}
m_{1,1} & \cdots & m_{1, n} \\
\vdots & \ddots & \vdots \\
m_{n, 1} & \cdots & m_{n, n}
\end{array}\right] \\
& x(t+T)=M(T) x(t)=M(T) B^{-1} a= \\
& M(T) B^{-1} a=\left[\begin{array}{ccc}
m_{n, n} & \cdots & m_{1, n} \\
\vdots & \ddots & \vdots \\
m_{2 n-1, n} & \cdots & m_{n, n}
\end{array}\right]\left[\begin{array}{c}
a_{n-1} \\
\vdots \\
a_{0}
\end{array}\right] \\
& m_{i, n}=-\sum_{j=0}^{n-1} b_{j} m_{i+j-n, n}, i=n+1, \cdots, 2 n-1
\end{aligned}
$$

Last column of state transition matrix becomes numerator sensitivity values: $\frac{\partial x(t)}{\partial a_{i-1}}=\boldsymbol{m}_{i, n}$

Multiplication Algorithm

$$
\begin{array}{ll}
W(k+1)=W(k) V & \begin{array}{l}
\text { V = last column vector } \\
\text { calculated once }
\end{array} \\
v_{i}=\sum_{j=i+1}^{n} b_{j} v_{j-i, n}, i=0, \cdots, n-1 & \\
w_{i, n}(k)=-\sum_{j=0}^{n} b_{j} w_{i+j-n, n}(k), i=n+1, \cdots, 2 n-1 \quad \text { Extend } \\
w_{i, n}(k+1)=\sum_{j=0}^{n-1} v_{j} w_{i+j, n}(k), i=1, \cdots, n \quad \begin{array}{l}
\text { New last column } \\
\text { result }
\end{array}
\end{array}
$$

R. Ross, "Efficient Method to Multiply Successively Functions of the Companion Matrix, and Applying this Method to Evaluate Transient Response," Conference Record, Fifth Asilomar Conference on Circuits and Systems, Pacific Grove, California, pp. 261-265, Nov. 1971

Some Last Column

Mathematics References

- W. E. Thomson, "Evaluation of Transient Response," Proc. IEEE, Nov. 1966, pp. 1584
- Several relationships between state transition matrix elements include last-column relationships
- Relationships can be applied to any function of a companion matrix
- J. Valand, "Calculation of Transient Response," Electron. Letters, vol.4, June 28, 1969, p. 260.
- A coefficients and last column of state transition matrix used to calculate transient response

Characteristic Equation

- Cayley-Hamilton Theorem - a matrix satisfies its own characteristic equation
- Computation of characteristic equations:
- Based on built in mathematical functions
- Or based on calculating traces (sum of diagonal terms) of powers of \mathbf{M} or \mathbf{L}

Differential

Difference

Equation
$|\lambda|-M \mid=$

$$
\begin{gathered}
\lambda^{n}+d_{n-1} \lambda^{n-1}+\cdots+d_{0}=0 \\
\mathbf{A}=\left[\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1 \\
-b_{0} & -b_{1} & \cdots & -b_{n-1}
\end{array}\right]
\end{gathered}
$$

Equation

$\mathbf{E}=\left[\begin{array}{cccc}0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \\ -d_{0} & -d_{1} & \cdots & -d_{n-1}\end{array}\right]$

$$
\text { | } \lambda \mathrm{I}-\mathrm{L} \mid=
$$

$$
\lambda^{n}+b_{n-1} \lambda^{n-1}+\cdots+b_{0}=0
$$

Trace Calculation: for Differential

$$
\begin{gathered}
\text { to Difference Equations } \\
T_{k}=\sum_{j=1}^{n} j b_{j} m_{j, n}(k T), k=1, \cdots, n \\
{\left[\begin{array}{c}
T_{1} \\
T_{2} \\
\vdots \\
T_{n}
\end{array}\right]=-\left[\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
T_{1} & 2 & \cdots & 0 & 0 \\
\vdots & T_{1} & \ddots & \vdots & \vdots \\
T_{n-2} & \vdots & \ddots & n-1 & 0 \\
T_{n-1} & T_{n-2} & \cdots & T_{1} & n
\end{array}\right]\left[\begin{array}{c}
d_{n-1} \\
d_{n-2} \\
\vdots \\
d_{0}
\end{array}\right]}
\end{gathered}
$$

Simplified by using last column mathematics Similar mathematics for Difference to Differential Equations

Lofti Zedeh, Charles Desoer, Linear System Theory: The State Space Approach, 1963, pp. 304-305

Maxime Böcher, Introduction to Higher Algebra, 1922, p. 297

Available Constraints

- Denominator degree (number of poles)
- Numerator degree (number of zeros, where lower degree produces less leading edge ripple)
- Set t_{s} start value, DC offset (y_{0})
- Minimum and maximum frequencies for log frequency domain plots
- Initial value
- Final value

Constraints (Oscilloscope Step and Impulse Response Extractions)

Constraints - Maximally Flat Envelope Delay Networks

Conclusions

- Early (1970's) algorithm outlined for physical measurement-based time-domain extraction
- Most calculations done in place to save memory
- Most calculations used last-column matrix mathematics
- Many subroutines worked in both the difference equation and differential equation domains
- Laplace transform formulation allows practical constraints to be implemented
- Result is a Laplace transform as a polynomial ratio as $\mathrm{N}(\mathrm{s}) / \mathrm{D}(\mathrm{s})$ from a time-domain response

European IBIS Summits

www.ibis.org/summits/

- J. E. Schutt-Ainé, "IBIS-Compatible Macromodel and Interconnect Simulation Techniques" (2018)
- T. Bradde, S. Grivet-Talocia, M. De Stefano, A. Zanco, "On Automated Generation of Behavioral Parameterized Macromodels, Part I: Algorithmic Aspects" (2018)
- M. De Stefano, S. Grivet-Talocia, T. Bradde, A. Zanco, "On Automated Generation of Behavioral Parameterized Macromodels, Part II: SPICE Equivalents and Applications" (2018)
- A. Zanco, E. Fevola, S. Grivet-Talocia, T. Bradde, M. De Stefano, "An Adaptive algorithm for Fully Automated Extraction of Passive Parameterized Macromodels" (2019)
- B. Ross, "Continuous and Discrete Modeling for IBIS-AMI (2011)
- B. Ross, "Time Response Utility" (2011 and .xls utility uploaded)

Other References and

Implementations

- S. Grivet-Talocia, B. Gustavsen, Passive Macromodeling, Theory and Applications, Wiley, 2016
- J. Cadzow, "Recursive Digital Filter Synthesis via Gradient Based Algorithms," IEEE Transactions on Audio and Electroacoustics, Oct. 1976 (difference equation duality)
- B. Ross, "Taylor Series Duality," Proc. $7^{\text {th }}$ IEEE Workshop of Signal Propagation on Interconnects, Siena, Italy, May 11-14, 2003, pp. 97-100

EPEPS2014 - Multnomah Falls, OR

Teraspeed Labs

