

SPICE Macromodel Generation

Bob Ross, Teraspeed Labs, USA bob@teraspeedlabs.com

European Virtual IBIS Summit (with Virtual SPI2021) May 12, 2021

Agenda

- Preliminary material
- Macromodel references
- Networks for poles and zeros (and their efficiencies)
- Operational amplifier open-loop response
- Operational amplifier macromodel example
- Conclusion

Automatic Implementation

- Starting point Laplace transform extraction as ratio of polynomials is s
- Laplace transform formats or pole/zero formats not interchangeable between EDA tools
- Lowest common denominator Berkeley SPICE RLC elements and controlled gain elements
- Implementation based on solving for poles and zeros and then cascading unit gain stages with efficient grouping.
- Automatic node numbering
- Stages referenced to one megohm (M Ω) resistor

SPICE Macromodels

- G. Boyle, B. Cohn, D. Pederson, J. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", IEEE Journal of Solid-State Circuits, Vol. SC-9, No. 6, Dec. 1974, Pp. 353-363
 - Dominant and second real pole
 - A commercial vendor macromodel adapted to illustrate a general behavioral macromodel generation strategy
 - Strategy can be applied to high-speed networks
- Cascaded SPICE elements are common practice from several vendors, but some macromodels use:
 - Real left-hand plane (LHP) poles and zeros
 - No right-hand plane (RHP) zeros
 - No complex poles or zeros
 - Extractions often based on frequency domain magnitude and phase measurements

Networks

- Basic Stages (simple poles and zeros or combinations)
- Constructed Stages (combining several basic networks for an overall set of poles and zeros
- Utility Networks for pole/zero cancelation
- All-pass Networks for cancellations
- Efficiencies relative to a single-pole stage (combined P+Z stages usually more efficient)
 - Parts per pole+zero relative to 3.0
 - Nodes per pole+zero relative to 1.0

Basic Stages

BASIC STAGES:

Real Zeros	Cmplx Conj Zeros	-	Cmplx Conj Poles	Poles+ Zeros	Stages	Parts	New Nodes	Parts Per P + Z	Nodes Per P + Z
---------------	------------------------	---	------------------------	-----------------	--------	-------	--------------	-----------------------	-----------------------

1. Real Pole

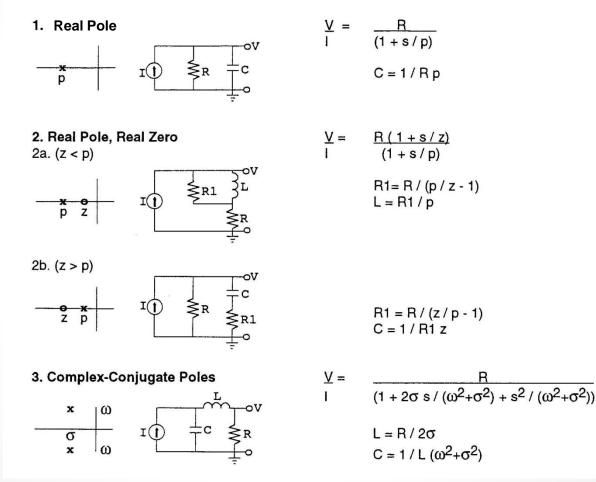
x						
~	1	1	3	1	3	1

2. Real Pole, Real Zero

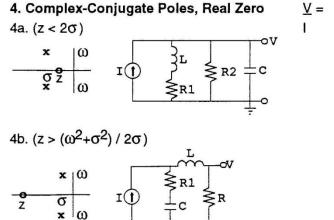
2a. z < p	2b. z > p					
o x	2	a, b: 1	4	2	2	1

3. Complex-Conjugate Poles

X						
	2	1	4	2	2	1
X			2			


4. Complex-Conjugate Poles, Real Zero

4a. z < 2σ	4b. $z > (\omega^2)^{-1}$	$+\sigma^{2})/2c$	5				
0	X	2	a: 1	5	2	1.67	0.67
Ŭ	X	3	b: 1	5	3	1.67	1


Basic Stages

BASIC STAGES:

Basic Stages (Continued)

$$= \frac{R (1 + s / z)}{(1 + 2\sigma s / (\omega^{2} + \sigma^{2}) + s^{2} / (\omega^{2} + \sigma^{2}))}$$

$$C = z / R (\omega^{2} + \sigma^{2})$$

$$R2 = 1 / C (2\sigma - z)$$

$$R1 = R R2 / (R2 - R)$$

$$L = R1 / z$$

 $\begin{array}{l} C = (2\sigma \; / \; (\omega^2 + \sigma^2) \; - \; 1 \; / \; z) \; / \; R \\ R1 = \; 1 \; / \; C \; z \\ L = \; 1 \; / \; C \; (\omega^2 + \sigma^2) \end{array}$

Constructed Stages

CONSTRUCTED STAGES:

Real Zeros	Cmplx Conj Zeros		Cmplx Conj Poles	Poles+ Zeros	Stages	Parts		Per	Nodes Per P + Z
---------------	------------------------	--	------------------------	-----------------	--------	-------	--	-----	-----------------------

4. Complex-Conjugate Poles, Real Zero (10 & 2)

4c. $(\omega^2 + \sigma^2) / 2\sigma > z > 2\sigma$

	X						
0		3	c: 2	8	4	2.67	1.33
	X						

5. Complex-Conjugate Poles, Two Real Zeros (11 & 2)

	X						
00		4	2	9	5	2.25	1.25
	X		max: 3	13	7	3.25	1.75

6. Complex-Conjugate Poles, Complex-Conjugate Zeros (11, 12 & 2)

0	X						
		4	3	14	7	3.5	1.75
0	X						

7. Two Real Poles, Complex-Conjugate Zeros (12 & 2)

0							
	XX	4	2	9	4	2.25	1
0			max: 3	13	6	3.25	1.5

8. Complex-Conjugate Poles, Real Pole, Complex-Conjugate Zeros (12 & 4)

0		X		min: 2	10	5	2	1
	X		5	2	10	6	2	1.2
0	19	X		max: 4	17	8	3.4	1.6

9. Complex-Conjugate Poles Real Pole, Complex-Conjugate Zeros, Real Zero (11, 12 & 2)

5. CO III	0	Jugater	X		Simplex-Con	Juguto	20100,110		1, 12 @ 2/
0	-	x		6	3	14	7	2.33	1.14
	0		X		max: 5	22	11	3.67	1.83

Utility Networks and Combinations for Construction

UTILITY NETWORKS AND COMBINATIONS FOR CONSTRUCTION:

	20-00 Jan 20	Cmplx Conj	Poles+ Zeros	Stages	Parts	New Nodes	Parts Per	Nodes Per
Zeros		Poles					P+Z	P + Z

10. Complex-Conjugate Poles, Fixed Real Zero

	X						
0		3	1	4	2	1.33	0.67
^ fixed	X						

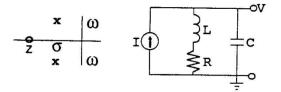
11. Complex-Conjugate Poles, Real Zero, Fixed Real Zero

11a. $z < 2\sigma$ 11b. $z > (\omega^2 + \sigma^2) / 2\sigma$ 11c. $(\omega^2 + \sigma^2) / 2\sigma > z > 2\sigma$ (by combination of 11a & 2)

	X		a: 1	5	3	1.25	0.75
00		4	b: 1	5	3	1.25	0.75
^or^ fix	X		c: 2	9	5	2.25	1.25

12. Complex-Conjugate Zeros, Real Pole, Fixed Real Pole

12a. p < 2 σ 12b. p > ($\omega^2 + \sigma^2$) / 2 σ 12c. ($\omega^2 + \sigma^2$) / 2 σ > p > 2 σ (by combination of 12a & 2)

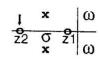

0			a: 1	5	2	1.25	0.5
	XX	4	b: 1	5	2	1.25	0.5
0	^or^ fix		c: 2	9	4	2.25	1

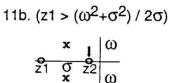
Utility Networks for Construction

UTILITY NETWORKS FOR CONSTRUCTION:

10. Complex-Conjugate Poles, Fixed Real Zero

$$\frac{V}{I} = \frac{R (1 + s / z)}{(1 + 2\sigma s / (\omega^2 + \sigma^2) + s^2 / (\omega^2 + \sigma^2))}$$
$$L = R / 2\sigma$$
$$C = 1 / L (\omega^2 + \sigma^2)$$


Utility Networks (Continued)


≤R1

1

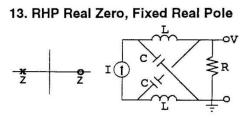
11. Complex-Conjugate Poles, Real Zero, **Fixed Real Zero**

11a. $(z1 < 2\sigma)$

12. Complex-Conjugate Zeros, Real Pole 12a. $(p1 < 2\sigma)$

$$\frac{1}{p^{2}} \stackrel{\omega}{\sigma} \stackrel{\omega}{\rho_{1}} \stackrel{\omega}{\omega}$$
12b. (p1 > ($\omega^{2}+\sigma^{2}$) / 2 σ) I(1)

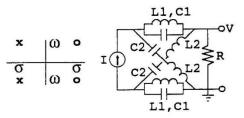
 $\frac{R (1 + s / z1) (1 + s / z2)}{(1 + 2\sigma s / (\omega^2 + \sigma^2) + s^2 / (\omega^2 + \sigma^2))}$ <u>V</u> = L = R/z1 $C = 1 / L (\omega^2 + \sigma^2)$ $R1 = R / (2\sigma / z1 - 1)$ $z_2 = 1 / R_1 C$ $C = (2\sigma / (\omega^2 + \sigma^2) - 1 / z1) / R$ $B1 - 1/C_{71}$


$$L = 1 / C (\omega^2 + \sigma^2)$$

z2 = R / L

$$\underline{V} = \frac{R (1 + 2\sigma s / (\omega^2 + \sigma^2) + s^2 / (\omega^2 + \sigma^2))}{(1 + s / p_1) (1 + s / p_2)} C = 1 / R p_1 L = 1 / C (\omega^2 + \sigma^2) R_1 = R / (2\sigma / p_1 - 1) p_2 = R_1 / L C = 1 / L (\omega^2 + \sigma^2) L = R (2\sigma / (\omega^2 + \sigma^2) - 1 / p_1) R_1 = L / p_1 p_2 = 1/RC$$

All-Pass Networks (Mirrored P/Z)


ALL-PASS NETWORKS FOR RIGHT-HAND PLANE ZEROS (WITH MIRRORED POLES):

= <u>R (1 - s / z)</u> (1 + s / z)

> L = R / z C = 1 / R²

14. RHP Complex-Conjugate Zeros, Fixed Complex-Conjugate Poles

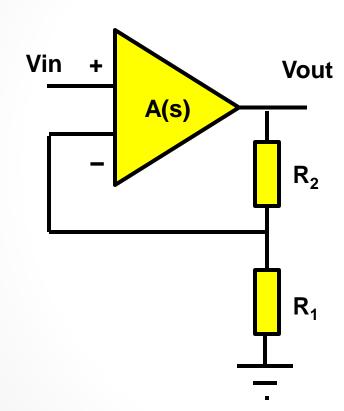
 $\frac{V}{I} = \frac{R \left(1 - 2\sigma s / (\omega^2 + \sigma^2) + s^2 / (\omega^2 + \sigma^2)\right)}{\left(1 + 2\sigma s / (\omega^2 + \sigma^2) + s^2 / (\omega^2 + \sigma^2)\right)}$

C1 = 1 / 2R σ L1 = 1 / C1 ($\omega^2 + \sigma^2$) L2 = R² C1 C2 = 1 / L2 ($\omega^2 + \sigma^2$)

ALL-PASS NETWORKS FOR RIGHT HAND PLANE ZEROS (WITH MIRRORED POLES):

Cmplx Conj		Conj	Stages	Parts	Per	Nodes Per
Zeros	1	Poles			P + Z	P + Z

13. RHP Real Zero, Fixed Real Pole


RHP O	x	2	1	6	3	3	1.5
	^ fixed	L		Ŭ	J	Ŭ	1.0

14. RHP Complex-Conjugate Zeros, Fixed Complex-Conjugate Poles

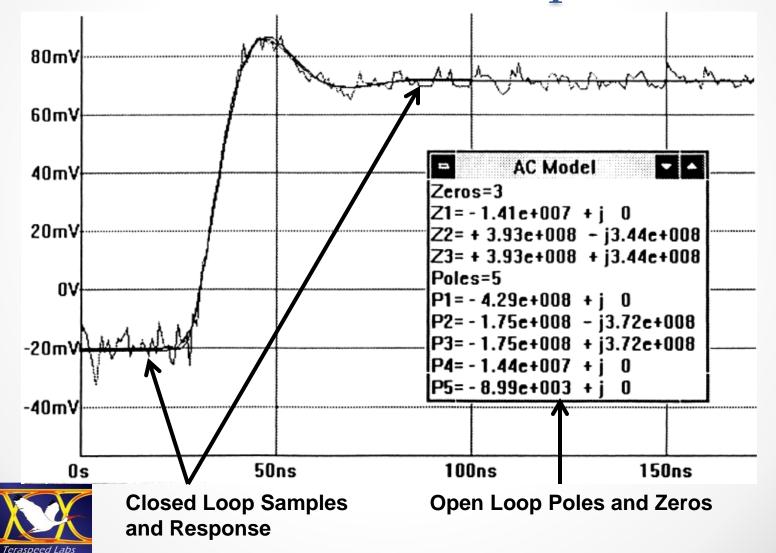
4. 1 0 0	Complex Com	agute Leioo,	I INCO C	ompiex	Conjugate	1 0100		
	RHP O	X fixed						
			4	1	10	5	2.5	1.25
	RHP O	X fixed						

Open Loop (OL) AC Model from Closed Loop (CL) Response

Extracted H(s) = Vout/Vin from time response = N(s)/D(s)

 $G = (R_1 + R_2)/R_1$

H(s) = A(s)/[1 + A(s)/G]


A(s) = H(s) + H(s)A(s)/GA(s) = H(s)/[1 - H(s)/G]

 $\begin{array}{l} A(s) = [N(s)/D(s)]/[1 - N(s)/GD(s)] \\ A(s) = N(s)/[D(s) - N(s)/G] \end{array}$

Poles and zeros of A(s) produces OL AC Model

Operational Amplifier AC Model Example

Generated SPICE Macromodel	<pre>* * * SETUP PARAMETERS * NPN Bipolar Junction Transistor Input * Vcc = 15 V, Vee = -15 V * Input Stage Tail Current = 0.1 mA * * MEASURED (OR USER OVERRIDDEN) PARAMETERS * </pre>
AC Model \checkmark \checkmark Zeros=3 Z1= -1.41e+007 + j 0 Z2= + 3.93e+008 - j3.44e+008 Z3= + 3.93e+008 + j3.44e+008 Poles=5 P1= - 4.29e+008 + j 0 P2= -1.75e+008 - j3.72e+008 P3= -1.75e+008 + j3.72e+008 P4= -1.44e+007 + j 0 P5= -8.99e+003 + j 0	<pre>* Srp = 135.3 V/us, Srn = 135.3 V/us * Avd = 94.211 dB at RL(Load) = 1e+009 kOhms f(0dB) = 71.8 MHz, Phi(Phase Margin) = 222.2 deg * ZEROS Radians Real Imaginary -1.41e+007 0 * 3.93e+008 -3.44e+008 * 0 62.5479 -54.7493 62.5479 -54.7493 62.5479 54.7493 * POLES Radians Real Imaginary * -8990 0 * -1.44e+007 0 * -1.75e+008 -3.72e+008 * -1.75e+008 -3.72e+008 * -4.29e+008 0 * NON-INVERTING INPUT * * NON-INVERTING INPUT * * NON-INVERTING INPUT * * * * * * * * * * * * * * * * * * *</pre>
<section-header><section-header></section-header></section-header>	<pre>*</pre>

Teraspeed Labs

•16

Low Frequency Pole

EREF 98 O	49 0 1	***************** CONSTRUCTED STAGE ************************************
* SECOND STAGE	E POLE AT 1430.8 HZ	* LHP REAL ZERO AT 2.24408 MHZ * LHP COMPLEX ZEROS AT 62.5479 +/- j 54.7493 MHZ
R2110098C2110098G2110098V219921V222250D2110021D2222100	7.39098e-013 6 5 0.000341195 2.39393 2.41393 DX	<pre>* LHP REAL POLE AT 2.29183 MHZ * LHP COMPLEX POLES AT 27.8521 +/- j 59.2056 MHZ * * LHP ZERO AT 2.24408 MHZ * NEW LHP ZERO AT 80.0792 MHZ * LHP COMPLEX POLES AT 27.8521 +/- j 59.2056 MHZ * R106 108 106 1e+006</pre>
* NEW LHP COME	ZEROS AT 62.5479 +/- j 54.7493 MHZ PLEX POLES AT 62.5479 +/- j 54.7493 MHZ	L106 106 98 0.070922 G106 108 98 49 105 1e-006
C101 101 98 C102 105 102 C103 105 103 C104 104 98 L101 101 98 L102 105 102 L103 101 103 L104 102 104	2 1.27226e-015 3 2.88139e-015 2.88139e-015 0.00288139 2 0.00288139 3 0.00127226	<pre>* * LHP COMPLEX ZEROS AT 62.5479 +/- j 54.7493 MHZ * LHP POLE AT 2.29183 MHZ * NEW LHP POLE AT 56.2663 MHZ * R109 110 109 1e+006 R110 109 98 18662.5 C109 110 109 6.94444e-014 L109 109 98 5.27888e-005 G109 110 98 49 108 1e-006 * * LHP ZERO AT 56.2663 MHZ * LHP POLE AT 80.0792 MHZ</pre>
	MHz Real Imaginary	* R111 112 111 1e+006

R112 111 98

L111 111 98

G111 112 98

	MHz
Real	Imaginary
-2.24408	0
62.5479	-54.7493
62.5479	54.7493

110 le-006

423218

49

0.000841133

Teraspeed Labs	

	MHz	
Real	8-416-307 Mills 128-0	Tmaginary
-0.0014308		0
-2.29183		0
-27.8521		-59.2056
-27.8521		59.2056
-68.2775		0

5 Poles, 5 Zeros, 4 Cancelled P/Z

EREF	98	0	49	0	1			**************************************
*					430.8 HZ		(9) 🏳	* LHP REAL ZERO AT 2.24408 MHZ * LHP COMPLEX ZEROS AT 62.5479 +/- j 54.7493 MHZ * LHP REAL POLE AT 2.29183 MHZ
R21 C21	100 100	98 98		0501e 9098e			\ \	* LHP COMPLEX POLES AT 27.8521 +/- j 59.2056 MHZ
G21 V21	100 99	98 21	6	5 9393	0.0003413	.95		* LHP ZERO AT 2.24408 MHZ (11) (11)
V22 D21	22 100	50 21	2.4 DX	1393		Can	cellation	* LHP COMPLEX POLES AT 27.8521 +/- j 59.2056 MHZ
D22	22	100	DX			Can	oonation	R106 108 106 1e+006 R107 108 107 2.38227e+007
					2.5479 + / -		93 MHZ 4.7493 MHZ	C106 107 98 8.34275e-017 L106 106 98 0.070922
*	LINP	COMPI	JEA P	OLLS	AI 02.54/9	+/- j 54	.7495 MHZ	G106 108 98 49 105 1e-006
R101 C101	105 101	98 98		7226e			(14)	* * LHP COMPLEX ZEROS AT 62.5479 +/- j 54.7493 MHZ * LHP POLE AT 2.29183 MHZ
C102 C103	105 105	102 103		7226e 8139e				* NEW LHP POLE AT 56.2663 MHZ (12)
C104	104	98	2.8	8139e	-015			R109 110 109 1e+006
L101 L102	101 105	98 102		02881 02881				R110 109 98 18662.5 C109 110 109 6.94444e-014
L103	101	103		01272				C109 110 109 6.94444e-014 L109 109 98 5.27888e-005
L104	102	104	0.0	01272	26			G109 110 98 49 108 1e-006
G101	102	101	49	100	1e-006			*
*								* LHP ZERO AT 56.2663 MHZ * LHP POLE AT 80.0792 MHZ (2)
					D ==1	MHz	·	* R111 112 111 1e+006 Cancollat
					-2.2440	a	0	R111 112 111 1e+006 R112 111 98 423218 Cancellat
					62.5479		-54.7493	L111 111 98 0.000841133
					62.5479		54.7493	G111 112 98 49 110 1e-006
						MHz	inde oder of by Proceedings and	**************************************
					Real -0.0014	308	Imaginary 0	
					-2.2918		0	
					-27.852	1	-59.2056	
		× ¥				12 C	terrar ter ändente "	

59.2056

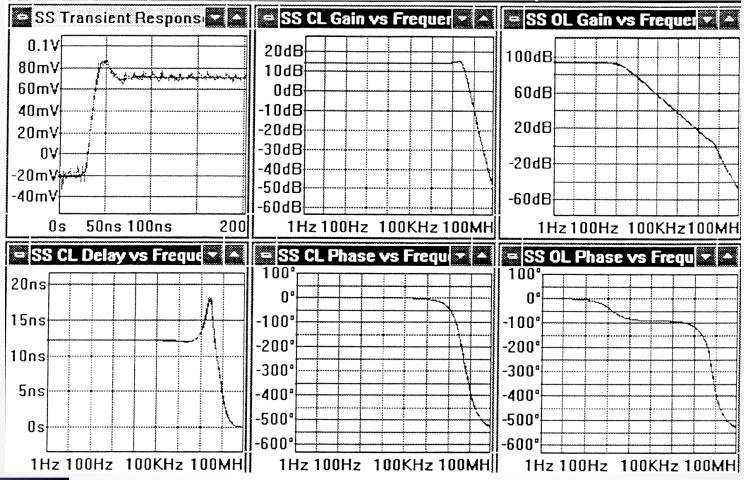
-27.8521

Last Pole and Last Stages

Z				
Imaginary				
0				
-54.7493				
54.7493				
z				
Imaginary				
0				
0				
-59.2056				
59.2056				
0				

(1) * LHP POLE AT 68.2775 MHZ R113 113 98 1e+006 C113 113 98 2.331e-015 G113 113 98 112 1e-006 49 * COMMON MODE GAIN STAGE WITH ZERO AT 20 KHZ * R57 59 57 1e+006 C57 59 57 7.95775e-012 **R58** 59 98 1 E57 57 98 49 3 3.55745

* OUT *	PUT S	TAGE								
R49	49	99	1800	5						
R50	49	50	1800							
ISY	1.	50		Names and the second						
	60	99	73.2							
R62	60									
			73.2							
L61		52		CORRECT THE REAL PROPERTY OF						
G63	63	50	113	200 1000	0.0136612					
G64		50	60	113	0.0136612					
	60	99	99	113	0.0136612					
G66	50	60	113	50	0.0136612					
V61	61	60	3.38	846						
V62	60	62	3.38	846						
D61	113	61	DX							
D62	62 ·	113	DX							
D63	99	63	DX							
D64	99	64	DX							
D65	50	63	DY	19						
D66	50	64	DY							
*										
* MOD	ELS A	ND EN	D							
*										
.MODE	LOX	NPN(I	S=le-	015 B	F=2076)					
.MODEL DX D(IS=1e-015)										
		D(IS=			50)					
. ENDS					18 A.					



Build Strategy Demonstrated

- Sort (by magnitude) poles and zeros in four bins:
 - Real poles (lowest may be in early stage of operational amplifier)
 - Complex-conjugate poles
 - Real zeros
 - Complex-conjugate zeros
- Model complex-conjugate RHP zeros by all-pass networks 14 or 13 and then in priority order use 9, 8, 7, and 6
- Model real zeros in priority order 5, 4, and 2
- Model remaining poles by 3 and 1
- Apply pole/zero cancellation for any "new" or "fixed" poles or zeros

Frequency Plots from Laplace Transform

"SS" is small signal

Conclusion

- SPICE macromodel generation strategy shown using unity gain, cascaded RLC pole and zero stages
- Pole/zero cancellation is effective for adding RHP zeros
- Operational amplifier macromodel illustrates the process
- Process can be applied to any macromodel including those for high-speed applications

