Circuit Synthesis of Multiport Networks from Passive Poles and Residues

Chiu-Chih (George) Chou National Central University, Taoyuan, Taiwan José E. Schutt-Ainé, University of Illinois, Urbana, IL

European IBIS Summit with SPI 2022 Siegen, Germany Virtual May 26, 2022

26th IEEE Workshop On Signal and Power Integrity

Interconnect Structures

26th IEEE Workshop On Signal and Power Integrity

Model-Order Reduction

Recursive Convolution

 $\widetilde{Y}(t) \mathbf{v}(t) = \mathbf{i}(t)$

• **Strategy**: Use reduced order model to minimize computation time.

 $\tilde{Y}(\omega)$ \Box $Y(\omega)$

26th IEEE Workshop On Signal and Power Integrity

Model-Order Reduction

- **Objective**: Incorporate frequency dependence into time-domain simulator
- Approaches: 1) Direct integration of code into SPICE 2) Generation of SPICE-compatible netlist

26th IEEE Workshop On Signal and Power Integrity

MOR via Vector Fitting

 Rational function approximation:

 $f(s) \approx \sum_{n=1}^{N} \frac{c_n}{s-a_n} + d + sh$

Introduce an unknown function σ(s) that satisfies:

$$\begin{bmatrix} \sigma(s)f(s) \\ \sigma(s) \end{bmatrix} \approx \begin{bmatrix} \sum_{n=1}^{N} \frac{c_n}{s - \tilde{a}_n} + d + sh \\ \sum_{n=1}^{N} \frac{\tilde{c}_n}{s - \tilde{a}_n} + 1 \end{bmatrix}$$

Poles of f(s)
 = zeros of σ(s):

$$f(s) \approx \frac{\sum_{n=1}^{N} \frac{c_n}{s - \tilde{a}_n} + d + sh}{\sum_{n=1}^{N} \frac{\tilde{c}_n}{s - \tilde{a}_n} + 1} = \frac{\prod_{n=1}^{N+1} (s - z_n)}{\prod_{n=1}^{N} (s - \tilde{z}_n)}$$

• Flip unstable poles into the left half plane.

26th IEEE Workshop On Signal and Power Integrity

Passivity Enforcement

Hamiltonian matrix:

• State-space form:

٠

 $\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{u}$ $\boldsymbol{y} = \boldsymbol{C}\boldsymbol{x} + \boldsymbol{D}\boldsymbol{u}$

 $\boldsymbol{M} = \begin{bmatrix} \boldsymbol{A} + \boldsymbol{B}\boldsymbol{K}\boldsymbol{D}^{\mathsf{T}}\boldsymbol{C} & \boldsymbol{B}\boldsymbol{K}\boldsymbol{B}^{\mathsf{T}} \\ -\boldsymbol{C}^{\mathsf{T}}\boldsymbol{L}\boldsymbol{C} & -\boldsymbol{A}^{\mathsf{T}} - \boldsymbol{C}^{\mathsf{T}}\boldsymbol{D}\boldsymbol{K}\boldsymbol{B}^{\mathsf{T}} \end{bmatrix}$

$$\boldsymbol{K} = \left(\boldsymbol{I} - \boldsymbol{D}^{T}\boldsymbol{D}\right)^{-1} \quad \boldsymbol{L} = \left(\boldsymbol{I} - \boldsymbol{D}\boldsymbol{D}^{T}\right)^{-1}$$

- Passive if *M* has no imaginary eigenvalues.
 - Sweep: $eig(I - S(j\omega)^{H}S(j\omega))$

- Quadratic programming:
 - Minimize (change in response) subject to (passivity compensation).

 $\min(vec(\Delta C)^{\mathsf{T}}\mathsf{H} vec(\Delta C)) \text{ subject to } \Delta \lambda = G \cdot vec(\Delta C).$

26th IEEE Workshop On Signal and Power Integrity

SPICE Netlist Synthesis

 Goal is to generate (using pole/residue information) a circuit netlist that will exhibit the same (frequency-dependent) behavior as that of the S-parameters of connector under study

26th IEEE Workshop On Signal and Power Integrity

Equivalent-Circuit Extraction

Macromodel is curve-fit to take the form

$$S(s) = d + \sum_{k=1}^{L} \frac{r_k}{s - p_k}$$

Need to find equivalent circuit associated with

- Constant term *d*
- Real Poles
- Complex Poles

26th IEEE Workshop On Signal and Power Integrity

Equivalent-Circuit Extraction

Constant Term

 $R = Y_o\left(\frac{1-d}{1+d}\right)$

Real Poles

 $R_2 = \frac{-1}{bC}$

 $C = -\frac{(b-a)}{b^2 Z}$

 $a = p_k + r_k$, and $b = p_k - r_k$

26th IEEE Workshop On Signal and Power Integrity

Realization – Complex Poles

There are several circuit topologies that will work

26th IEEE Workshop On Signal and Power Integrity

Netlist from Poles & residues

*Poll 2-port S-parameter circuit model * 14 -pole approximation

.subckt Poll 42000 56000 vsens42001 42000 42001 0.0 vsens56001 56000 56001 0.0

```
*subcircuit for s[1][1]
*complex residue-pole pairs for S[1][1] at k= 1 -> 1st pole: -4.8961e+00 3.6506e+01 residue: 2.1006e-01 -2.8971e-01
*
                          -> 2nd pole: -4.8961e+00 -3.6506e+01 residue: 2.1006e-01 2.8971e-01
*circuit type = 9
elc1 104200101.0
hc2 2 1 vsens42001 50.0
rtersc3 2 3 50.0
vp4 3 4 0.0
r1cd5 4 0 5.17406e+01
l1cd5 4 5 -1.25500e-08
r2cd6 5 6-1.30103e+03
c1cd6 6 0-7.19920e-15
r3cd6 4 6 1.48633e+03
*complex residue-pole pairs for S[1][1] at k= 2 -> 1st pole: -1.3039e+00 2.7679e+01 residue: -4.3856e-01 -1.9087e+00
*
                          -> 2nd pole: -1.3039e+00 -2.7679e+01 residue: -4.3856e-01 1.9087e+00
rtersc9 8 9 50.0
gs196 0 56001 196 0 0.020
rnort42001 42001 0 5.00000e+01
rnort56001 56001 0 5.00000e+01
.ends Poll
*main circuit
rgen 1 2 50.0
x1 2 3 Poll
vin 1 0 pulse (0 1 0.20000ns 0.10000ns 0.10000ns 2.00000ns 6.00000ns)
rport2 3 0 50000.0000000
.tran 0.00039ns 7.00000ns
.end
```

26th IEEE Workshop On Signal and Power Integrity

4-Port Network

SPICE simulation Using generated netlist (Method 2)

26th IEEE Workshop On Signal and Power Integrity

Model-Order Reduction

Start with S parameters from field solver
 Use vector fitting to get poles & residues
 Perform assessment via Hamiltonian
 Enforcement: Residue Perturbation Method
 Simulation: Recursive convolution > Fast

Number of Ports	Order	CPU-Time
4	20	1.7 secs
6	32	3.69 secs
10	34	8.84 secs
20	34	33 secs
40	50	142 secs
80	12	255 secs

26th IEEE Workshop On Signal and Power Integrity

Review of some classic synthesis approaches for S matrix in pole-residue form*

- 1. (PI network for Y matrix)
- 2. PI network for S by Y + VCVS + CCVS
- 3. State-space S
- 4. State-space S-to-Y then PI
- 5. Pole-residue S-as-Y
- 6. Direct pole-residue specification

$$S_{ij} = d^{(ij)} + \sum_{k=1}^{N} \frac{r_k^{(ij)}}{s - p_k^{(ij)}} = d^{(ij)} + \sum_{k=1}^{N} S_{ij,k}$$

* Chiu-Chih Chou, José E. Schutt-Ainé, "Equivalent Circuit Synthesis of Multiport S Parameters in Pole–Residue Form", *IEEE Transactions on Components, Packaging and Manufacturing Technology,* Volume 11, Issue: 11, pp. 1971-1979, 2021, November 2021

26th IEEE Workshop On Signal and Power Integrity

Model 1. PI network for Y matrix (1/2)

$$Y_{ij} = d^{(ij)} + \sum_{k=1}^{N} \frac{r_k^{(ij)}}{s - p_k^{(ij)}}$$

Pole-residue Y matrix → PI model (direct correspondence)

26th IEEE Workshop On Signal and Power Integrity

Model 1. PI network for Y matrix (2/2) (no controlled sources, but have negative elements)

A pair of complex Constant A real pole *N* pole-residue pairs conjugate poles (RLCR) $Y = d \qquad Y = \frac{r}{s-p} \qquad Y = \frac{r}{s-p} + \frac{r^*}{s-p^*}$ $Y = \sum_{k=1}^{n} Y_k$ $\begin{array}{c} \bigcap_{r=1}^{n} \\ \bigcap_{r=1}^{n} \\ \prod_{r=1}^{n} \\ \prod_{r=1}^$ $\cdots Y_N$

26th IEEE Workshop On Signal and Power Integrity

Model 2. PI network for S by Y + VCVS + CCVS

26th IEEE Workshop On Signal and Power Integrity

Model 3. State-space S (1/2) (a common cross-platform topology)

26th IEEE Workshop On Signal and Power Integrity

Model 3. State-space S (2/2)

26th IEEE Workshop On Signal and Power Integrity

Model 4. State-space S to Y then PI (no controlled sources needed)

State-space for S matrix

$$A = \underset{i=1...P}{diag} p_k^{(ij)}$$

$$i=1...P$$

$$k=1...N$$

$$B_{nj} = 1_{\{(j-1)NP < n \le jNP\}}$$

$$C_{in} = r_k^{(ij)} \cdot 1_{\{n = (j-1)NP + (i-1)N + k\}}$$

$$D_{ij} = d^{(ij)}$$
Pole-residue for Y matrix

$$Y_{ij} = d^{(ij)} + \sum_{k=1}^{N} \frac{r_k^{(ij)}}{s - p_k^{(ij)}}$$
Problem: $(I + D)$ may be singular!
European noise source of Y matrix

$$F_{ii} = \sum_{j=1}^{P} Y_{ij}$$
Problem: $(I + D)$ may be singular!

20

Model 5. Pole-residue S-as-Y (minimized for SISO pole)

26th IEEE Workshop On Signal and Power Integrity

Model 6. Direct pole-residue specification (permit recursive convolution)

$$S_{ij} = d^{(ij)} + \sum_{k=1}^{N} \frac{r_k^{(ij)}}{s - p_k^{(ij)}}$$

Incident wave calculator for each port

Gs	_1_1	gno	0_£	p	_1	FOSTER	inc_1	0	-5.69	9243	4755	414	126	e-03		0
+	(-2	2.4391	1504	431	856	222e+04,	0) /	(-4	.9604	4760-	4161	921	0e+)7,	0)
+	((5.160	731	778	543	656e+07,	0)/	(-1	.7141	1703	9466	460	3e+0)9,	0)
+	(-[.894	7884	422	520	538e+07,	5.662	22937	66458	3602	e+07)	/ (-1.	67	218
+	(8	8.7139	9663	348	296	802e+07,	-8.139	96221	29292	2254	e+07)	/ (-1.	84	733
+	(2	2.6171	1734	411	981	527e+08,	1.358	34644	34932	2994	e+08)	/ (-2.	17	708
+	([.6335	5431	792	451	439e+07,	6.271	15734	8818	7740	e+08)	/ (-2.	57	889
+	(-]	7.9254	1532	224	991'	798e+08,	-3.731	14574	7944	7733	e+07)	/ (-2.	81	115
+	(-[.3934	1169	945	756	004e+08,	-3.078	83980	88322	2048	e+08)	/ (-2.	26	115
+	(3	3.6122	283(069	470	346e+06,	-4.993	39084	14380	6742	e+06)	/ (-1.	35	763
+	(-1	.359	7509	933	146	977e+07,	-2.875	57526	48140	6065	e+08)	/ (-2.	39	584

Comparison

	Model 2	Model 3	Model 4	Model 5	Model 6	
	PI network for S by Y + VCVS+CCVS	State- space S	State- space S to Y	Pole- residue S- as-Y	Direct pole- residue specification	
Controlled sources	Yes	Yes	No	Yes	Yes	
Negative RLC	Yes	No	Yes	Yes	No	
Recursive convolution	No	No	No	No	Yes	
Cross platform	Yes*	Yes	Yes*	Yes*	No	
		†	↑		1	

* if negative RLC permitted

Offered by many commercial EDA tools.

26th IEEE Workshop On Signal and Power Integrity

Example: macromodel of 20 ports and 110 MIMO poles (10 coupled microstrips)

Total simulation time (s)

	State-space S (model 3)	PI network (model 2)	Foster (model 6)	
EDA Tool A	338	815	190	
EDA Tool B	295	383	94	
Ngspice	200	788		egrity

Conclusion

- Many different ways to synthesize equivalent circuits for S-parameters in pole-residue form
- Considerations for choosing circuit topology
 - Want recursive convolution?
 - Want cross platform exchangeability?
 - Controlled source and negative RLC acceptable?
 - SISO or MIMO pole-residue model?