An accurate IBIS modelling technique for Open Drain Drivers

Speaker: Rahul Kumar
Co-Author: Manish Bansal, Raushan Kumar
STMicroelectronics Pvt Ltd.
Agenda

1. Introduction
2. Conventional approach
3. Proposed approach
4. Results
5. Conclusion
I2C transmitter design challenges

- To meet electrical specification
 - Across wide range of PVT
 - Application requirement to support different combinations of external resistance & bus capacitance ranges
 - Multi-mode support (Standard, Fast, Fast-plus etc.)
- This led circuit designer to use unconventional approach (like feedback, controlled drive) to meet electrical specification

Variation of Fall trigger at N-MOS gate termination due to miller effect
IBIS development & quality challenge

- IBIS doesn’t replicate feedback effect
- Falling trigger of last stage N-MOS gate is dependent on PAD & bus capacitance
- Conventional approach to extract [Rising waveform], [Falling waveform] table is not enough to capture the feedback effect, which results in higher inaccuracy of IBIS vs Spice correlation
Conventional V-t Data extraction approach

- Open_drain models have two waveform tables
 - [Rising waveform] : attach external resistance with bus supply and use this load to derive the rising edges
 - [Falling waveform] : attach external resistance with bus supply and use this load to derive the falling edges

- Top I2C cell splits into many sub-models depending upon number of external resistances (under [Model selector])

- I2C transmitter have feedback and so output falling edges controlled by bus capacitance

- The IBIS model develop with this approach doesn’t incorporate feedback effect introduced due to bus capacitance

Spice setup for V-T data generation
The feedback used in design impacts the effective capacitance and alters the response of the device (Miller effect).

Higher the bus capacitance, lower impact of miller cap effect is observed.

Top I2C cell splits into many sub-models depending upon number of external resistances along with bus capacitance:

- In order to extract [Falling waveform] CFixture is added along with pullup resistance (R_fixture).
- CFixture is selected in such a way that it captures the effect of feedback capacitance for certain range of bus capacitance.

Proposed approach

Spice setup for V-T data generation (Modified approach).

CFixture selection for V-T data capturing.
Results

<table>
<thead>
<tr>
<th>Type</th>
<th>Corner</th>
<th>Generic IBIS</th>
<th>Modified IBIS</th>
<th>Spice</th>
<th>% Error Generic approach</th>
<th>% Error Modified approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall time (ns)</td>
<td>Max</td>
<td>4.932</td>
<td>9.767</td>
<td>9.901</td>
<td>50.19</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>25.807</td>
<td>31.165</td>
<td>31.212</td>
<td>17.32</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>Typ</td>
<td>10.828</td>
<td>17.351</td>
<td>17.641</td>
<td>38.62</td>
<td>1.64</td>
</tr>
</tbody>
</table>

Comparison table
• IBIS vs Spice correlation
 • Proposed approach has very high accuracy (~1%), where generic approach has very significant error (~50%)

• Model development & validation cost
 • higher number of models in proposed approach
 • Automation & parallel computing machines eases in achieving almost same development & validation time
 • Justifiable for such high accuracy

• Approach can be used for any design having feedback from IO’s PAD to last stage MOS gate
Our technology starts with You

Find out more at www.st.com