

European IBIS Hybrid Summit May 10, 2023 Aveiro, Portugal

An accurate IBIS modelling technique for Open Drain Drivers

Speaker: Rahul Kumar Co-Author: Manish Bansal, Raushan Kumar STMicroelectronics Pvt Ltd.

Conclusion

Introduction (1/2)

I2C transmitter design challenges

- To meet electrical specification
 - Across wide range of PVT
 - Application requirement to support different combinations of external resistance & bus capacitance ranges
 - Multi-mode support (Standard, Fast, Fast-plus etc.)

Variation of Fall trigger at N-MOS gate termination due to miller effect

This led circuit designer to use unconventional approach

(like feedback, controlled drive) to meet electrical specification

Introduction (2/2)

IBIS development & quality challenge

- IBIS doesn't replicate feedback effect
- Falling trigger of last stage N-MOS gate is dependent on PAD & bus capacitance
- Conventional approach to extract [Rising waveform], [Falling waveform] table is not enough to capture the feedback effect, which results in higher inaccuracy of IBIS vs Spice correlation

Conventional V-t Data extraction approach

• Open_drain models have two waveform tables

- [Rising waveform] : attach external resistance with bus supply and use this load to derive the rising edges
- [Falling waveform] : attach external resistance with bus supply and use this load to derive the falling edges
- Top I2C cell splits into many sub-models depending upon number of external resistances (under [Model selector])
- I2C transmitter have feedback and so output falling edges controlled by bus capacitance
- The IBIS model develop with this approach doesn't incorporate feedback effect introduced due to bus capacitance

Spice setup for V-T data generation

Proposed approach

- The feedback used in design impacts the effective capacitance and alters the response of the device(Miller effect)
- Higher the bus capacitance, lower impact of miller cap effect is observed
- Top I2C cell splits into many sub-models depending upon number of external resistances along with bus capacitance
 - In order to extract [Falling waveform] C_fixture is added along with pullup resistance (R_fixture)
 - C_fixture is selected in such a way that it captures the effect of feedback capacitance for certain range of bus capacitance

Spice setup for V-T data generation (Modified approach).

C_fixture selection for V-T data capturing.

Results

Conventional approach

life.augmented

Proposed approach

Туре	Corner	Generic IBIS	Modified IBIS	Spice	% Error Generic approach	% Error Modified approach
Fall time (ns)	Max	4.932	9.767	9.901	50.19	<mark>1.35</mark>
	Min	25.807	31.165	31.212	17.32	0.15
	Тур	10.828	17.351	17.641	38.62	<mark>1.64</mark>

Comparison table

Conclusion

- IBIS vs Spice correlation
 - Proposed approach has very high accuracy (~1%), where generic approach has very significant error(~50%)
- Model development & validation cost
 - higher number of models in proposed approach
 - Automation & parallel computing machines eases in achieving almost same development & validation time
 - Justifiable for such high accuracy
- Approach can be used for any design having feedback from IO's PAD to last stage MOS gate

Our technology starts with You

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

