The Partner For Success

Accurate SI Analysis under Overclocking conditions with Power-Aware Buffer Models

European Hybrid IBIS Summit with IEEE SPI 2024 Lisbon, Portugal May 15, 2024

Michael Schaeder †, Mariusz Faferko, Markus Buecker EMC Technology Center, Paderborn, Germany

Remembering Michael Schaeder

- This work was initiated by our colleague Michael Schaeder
- He worked for more than 25 years in the area of component/buffer modeling, mostly based on IBIS
- We want to share our approach to a common problem called Overclocking of IBIS buffer models

Overview

Introduction:

- Output Buffer Modeling
- What is Overclocking?
- Effects of Overclocking
- Dealing with Initial Delays
 - Considering power-aware buffer models
- Dealing with Overclocking
 - Switching characteristics
- Results
 - Time-domain charts
 - Eye Pattern
- Summary

Comparisons with Reference Tool

Modeling the IBIS Output Buffer Behavior

ZUKEN®

An output buffer can be modeled by a set of current sources i(t, v)

What is Overclocking?

- Overclocking happens when an IBIS driver model is operated faster than its switching characteristics would usually allow, i.e. they take longer to switch than the unit-interval (UI) time
 - IBIS assumes to always fully switch from $L \rightarrow H$ and $H \rightarrow L$, using the complete switching characteristics

Effects of Overclocking

- Simple point-to-point topology, lossy TLs
- Driver model operates in overclocking mode
 - Signal @ Driver Die w/ and w/o initial delay corrections from IBIS simulation
 - Pseudo-random bit pattern @ 1GHz

Discussing Overclocking

- How to resolve the overclocking issue was discussed already in 2002
- EDA Tool vendors provided several solutions
 - Windowing switching characteristics
 - Overlap multiple switching cycles
- With IBIS V5.0 (power-aware buffer models) additional trouble appeared
- IBIS BIRD 168.1:"Handling of Overclocking Caused by Delay in Waveform Data" \rightarrow BIRD 177 \rightarrow [Initial Delay] in IBIS V6.1

Dealing with Initial Delays

- IBIS data from various vendors show some significant initial delay in the switching characteristics and composite currents
- To describe the actual timing of a buffer, any *artificial* initial delay has to be removed
 - if [Initial Delay] is given in the IBIS data → use it!
 - Determine the longest possible initial delay from the charts v(t)- and i(t)
 - Composite current i(t) is available for power-aware buffers, only
 - Removing the determined initial delay from v(t)- and i(t) characteristics
 - Keeping the correlation between v(t) and i(t)
- Derive switching coefficients k(t) from v(t)-, i(t)-, v(i)characteristics for the output buffer model

.

ZUKEN

Dealing with Overclocking

- When transition is incomplete, the starting point for the next UI needs to be determined
 - At the moment of switching $L \rightarrow H / H \rightarrow L$:
 - Ensuring continuity of the output voltage in the moment of switching
 - Determine currents in all model branches from V/I-tables
 - Determine starting point of the next transition from switching coefficients of the opposite edge
 - Compute next step in time for the output voltage from all current sources and circuit elements of the buffer

Dealing with Overclocking

Dealing with Overclocking

ZUKEN®

11

ZUKEN

Some Results

Initialization

- In case of overclocking, some initial bits of the time-domain simulation may be required to adjust the timing and position the UI window in the switching characteristic data
- This depends on the actual model data (e.g. on how quickly a transition is complete)
- Switching behavior depends on previous state of the transition process

Some Results

- Simple point-to-point topology, lossy TLs
- Driver model operates in overclocking mode
 - Signal @ Driver Die w/ and w/o initial delay corrections
 - Pseudo-random bit pattern @ 1GHz

Some Results

ZUKEN®

- Simple point-to-point topology, lossy TLs ottage (V)
- Driver model operates in overclocking mode
 - Signal @ Driver Die w/ and w/o initial delay corrections

0

- Pseudo-random bit pattern @ 1GHz
- Time-domain analysis, **NOT** IBIS AMI

No initial delay removal

Initial delay removed

Ref. Simulator

- Accurate SI Analysis is possible under overclocking conditions
 - For power-aware IBIS models as well
- Initial delays given in IBIS output buffer descriptions need to be treated
 - Too much / artificial initial delay cause models to run in overclocking mode, easily
 - Considering timing correlation between switching characteristics and composite currents in power-aware buffer models
 - Hopefully, model makers describe [Initial Delay] in the model description, properly
 - Otherwise, ...
 - EDA Software can improve things and guess the right model behavior, even in unspecified terrain
- However, some model makers could do a better job to be on the safe side...
- Model users rely on correct model data and model interpretation to make correct design decisions

Thanks a lot! Obrigado! Danke!

The Partner For Success

