

Hybrid European IBIS Summit at SPI 2025 Gaeta, Italy May 14, 2025



# IBIS modelling approach for design having high $R_{\rm on}$ variation with process

Speaker: Raushan Kumar

Co-authors: Manish Bansal, Rahul Kumar

STMicroelectronics

Agenda

1 Challenge

5 IBIS vs SPICE matching results

2 Conventional buffer V/T data extraction

```
6 Three takeaways
```

```
3 Implemented V-T extraction approach
```

4 Modification in IBIS table



#### Challenge

- Non-conventional I/O design using high voltage devices in low voltage applications leads to significant R<sub>on</sub> variation across PVT
- It affects the accuracy of the IBIS V-T data in capturing the true switching behavior of the design
- Selecting a single R<sub>fixture</sub> to accurately capture the switching behavior is challenging





#### Conventional buffer V-T data extraction

- V-T data captures the non-linearity of device (based on buffer type 2/4 V-T table is required)
- A typical load condition is applied that the buffer will encounter in actual use
- Transient simulation is performed to capture the complete dynamic behavior of the buffer
- A single model developed using typical R<sub>fixture</sub> is sufficient for all PVT (typ, min, max)



#### Pull-up reference V/T measurement setup



Pull-down reference V/T measurement setup



#### Implemented V-T extraction approach

- Non-conventional I/O designs exhibit significant R<sub>on</sub> variation with process (best, worst, typ)
- Capturing accurate transient characteristics using typical  $R_{\text{fixture}}$  is not feasible
- Three separate models are required, each based on different  ${\rm R}_{\rm on}$ 
  - It enhances the captured swing
  - Captures accurately the non-linear waveform shapes with Ron variation



Implemented Pull-up reference V/T measurement setup



Implemented Pull-down reference V/T measurement setup



#### Modification in IBIS table

| [Rising Waveform]     |             |             |             |  |  |  |
|-----------------------|-------------|-------------|-------------|--|--|--|
| R_fixture             | = 200.0     |             | vy data     |  |  |  |
| V_fixture             | = 1.98V     | All IIIa    | ix uala     |  |  |  |
| V_fixture_min = 1.98V |             |             |             |  |  |  |
| V_fixture_men1.98V    |             |             |             |  |  |  |
| 0s 🗧                  | 389.15818mV | 389.15818mV | 389.15818mV |  |  |  |
| 48.0ps                | 389.15820mV | 389.15820mV | 389.15820mV |  |  |  |
| 100.0ps               | 389.15819mV | 389.15819mV | 389.15819mV |  |  |  |
| 148.0ps               | 389.15819mV | 389.15819mV | 389.15819mV |  |  |  |
| 196.0ps               | 389.15818mV | 389.15818mV | 389.15818mV |  |  |  |
| 248.0ps               | 389.15820mV | 389.15820mV | 389.15820mV |  |  |  |
| 296.0ps               | 389.15824mV | 389.15824mV | 389.15824mV |  |  |  |
| 348.0ps               | 389.16291mV | 389.16291mV | 389.16291mV |  |  |  |
| 396.0ps               | 389.16303mV | 389.16303mV | 389.16303mV |  |  |  |
| 444.0ps               | 389.14998mV | 389.14998mV | 389.14998mV |  |  |  |
| 496.0ps_              | 389.11195mV | 389.11195mV | 389.11195mV |  |  |  |
| 544.0ps               | 389.08820mV | 389.08820mV | 389.08820mV |  |  |  |
| 592.0ps               | 389.10966mV | 389.10966mV | 389.10966mV |  |  |  |
| 644.0ps               | 389.13647mV | 389.13647mV | 389.13647mV |  |  |  |

| Rising Waveform]    |             |             |               |  |  |
|---------------------|-------------|-------------|---------------|--|--|
| _fixture            | = 400.0     |             |               |  |  |
| _fixture            | = 1.8V      | All t       | vp data       |  |  |
| _fixture_min = 1.8V |             |             |               |  |  |
| fixture_max = 1.8V  |             |             |               |  |  |
| 0s 🛛                | 332.75576mV | 332.75576mV | 332.75576mV   |  |  |
| 92.0ps              | 332.75577mV | 332.75577mV | 332.75577mV 🗧 |  |  |
| 184.0ps             | 332.75577mV | 332.75577mV | 332.75577mV   |  |  |
| 280.0ps             | 332.75573mV | 332.75573mV | 332.75573mV   |  |  |
| 372.0ps             | 332.75579mV | 332.75579mV | 332.75579mV   |  |  |
| 464.0ps             | 332.76044mV | 332.76044mV | 332.76044mV   |  |  |
| 556.0ps             | 332.76071mV | 332.76071mV | 332.76071mV   |  |  |
| 648.0ps             | 332.74332mV | 332.74332mV | 332.74332mV 🔳 |  |  |
| 744.0ps             | 332.70460mV | 332.70460mV | 332.70460mV   |  |  |
| 836.0ps             | 332.70018mV | 332.70018mV | 332.70018mV   |  |  |
| 928.0ps             | 332.71706mV | 332.71706mV | 332.71706mV   |  |  |
| 1.02ns              | 332.77458mV | 332.77458mV | 332.77458mV   |  |  |
| 1.116ns             | 332.87317mV | 332.87317mV | 332.87317mV   |  |  |
| 1.208ns             | 332.94713mV | 332.94713mV | 332.94713mV   |  |  |
| 1.3ns               | 333_91333mV | 222.01332mV | 33_01333mV    |  |  |

| [Rising Wa            | veform]             |             |             |  |
|-----------------------|---------------------|-------------|-------------|--|
| R_fixture             | = 700.0             |             |             |  |
| V_fixture             | = 1.62V             | All m       | in data 📃   |  |
| V_fixture_min = 1.62V |                     |             |             |  |
| V_fixture_            | <u>max = 1.6</u> 2V |             |             |  |
| 0s                    | 342.83640mV         | 342.83640mV | 342.83640mV |  |
| 164.0ps               | 342.83643mV         | 342.83643mV | 342.83643mV |  |
| 328.0ps               | 342.83639mV         | 342.83639mV | 342.83639mV |  |
| 492.0ps               | 342.83649mV         | 342.83649mV | 342.83649mV |  |
| 656.0ps               | 342.83885mV         | 342.83885mV | 342.83885mV |  |
| 820.0ps               | 342.84069mV         | 342.84069mV | 342.84069mV |  |
| 984.0ps               | 342.84002mV         | 342.84002mV | 342.84002mV |  |
| 1.148ns               | 342.83134mV         | 342.83134mV | 342.83134mV |  |
| 1.312ns               | 342.81394mV         | 342.81394mV | 342.81394mV |  |
| 1.476ns               | 342.79253mV         | 342.79253mV | 342.79253mV |  |
| 1.64ns                | 342.80076mV         | 342.80076mV | 342.80076mV |  |
| 1.804ns               | 342.81565mV         | 342.81565mV | 342.81565mV |  |
| 1.968ns               | <u>342 8</u> 5708mV | 342.85708mV | 342.85708mV |  |

Best process V-T table (R<sub>fixture</sub>=200Ω) Typ process V-T table (R<sub>fixture</sub>=400Ω) Worst process V-T table  $(R_{fixture} = 700\Omega)$ 

- To prevent confusion during model usage, the V-I, V-T table are modified in accordance with the process
- Column containing typ, min, max data is adjusted based on the process for which the model is developed
- Each column contains data extracted for Ron specific to a particular process



#### **IBIS vs SPICE** matching results



Conventional approach model matching  $(R_{fixture} = 200\Omega)$ 



Implemented approach typ process model matching



 $(R_{fixture} = 400\Omega)$ 



Implemented approach best process model matching  $(R_{fixture} = 200\Omega)$ 



Implemented approach worst process model matching  $(R_{fixture} = 700\Omega)$ 

#### Three takeaways

### 1

Non-conventional IO design is becoming the new normal.

• HV devices in LV application

IBIS modeling of such non-conventional designs requires a nonstandard approach

2

Ron dependent V-T data extraction to capture accurate non-linearity of design across PVT 3

Implemented approach improves IBIS vs SPICE correlation but increases modeling time

- Verify Ron variation before V-T data extraction
- Manual modification of IBIS V-I, V-T table



## Our technology starts with You



© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

