Analyzing Crosstalk’s Impact on BER Performance: Methods and Solutions

Minoru Ishikawa
System Design Division

Asian IBIS Summit
Yokohama Japan
November 18, 2011
Topics

- Introduction
- The solutions best to be implemented in channel analysis environment
 — Correctly predict channel behavior

- Discussions on channel crosstalk responses
 — How to generate crosstalk response
 — How to include crosstalk response in time-domain and statistical analysis during channel simulation

- Simulation algorithms on channel crosstalk
 — Synchronous and asynchronous methods
 — Comparisons of advantages and limitations
Introduction
What is happening in high speed design world?

- In 2008, most of I/O interface works at the rates of 5 to 6Gbps
 - PCI Express Gen2 at 5Gbps for computer I/O buses
 - Optical Internetworking Forum (OIF) at 6Gbps for network communication
 - Serial Advanced Technology Attachment (SATA) III/SAS II at 6Gbps for storage area networks

- The following generation standards support data rates from 8 to 11Gbps
 - IEEE 10G Ethernet
 - PCIe Gen3 (8.0 Gbps) for computer I/O buses

- Data rates are approaching 20Gbps in 2015
 - According to the International Technology Roadmap, data rate of serial links doubles every 2-3 years

- New IEEE standard specifies design requirements for data rates at 25-28Gbps
 - See papers about 25-28Gbps designs from DesignCon in recent years
Facing the challenges

- Can the current device models accurately describe the behavior of SERDES components at data rates of 5Gbps or higher?
- Are the interconnect models accurate to capture material behaviors at high frequencies?
New device modeling methodology

- Recall why IBIS standard was introduced
 - Need a set of standard data to create behavioral models to
 - represent actual IO behaviors with reasonable accuracy
 - simplify interconnect simulation at boards level
 - Simulation of transistor based IO models with interconnects are very time consuming
 - protect circuit design knowledge from IC companies
 - Different simulators can use the same set of data

- Previous versions of IBIS show limitations in modeling advanced SERDES devices, but the original requirements to introduce and enhance IBIS standard remain unchanged
 - IP protection, interoperability, fast simulation for system interconnects
New device modeling methodology

- Algorithmic Modeling Interface (AMI)
 - The method used by EDA tools to link compiled Algorithmic Models dynamically with IBIS buffer models and interconnects of a channel of SERDES design
 - DLL
 - Shared Object

- Best practice: making AMI as a standard
Algorithm Modeling Interface - IBIS 5.0

- Original proposal submitted in June 2006
- Reviewed and updated proposed AMI API working with IP vendors, EDA vendors and systems companies
- Progress in standardization
 - IBIS 5.0 approved on Aug 29, 2008
 - http://eda.org/pub/ibis/ver5.0/ver5_0.doc
 - IBIS 5.0 Parser available since December 2009
 - IBIS ATM committee continues to make the standard complete and fit into design and simulation flows
- AMI interoperability kits available on IBIS website to kick-start modeling process and to perform interoperability test
AMI in IBIS 5.0 – Channel model

- IBIS-AMI: circuit models plus algorithmic models

- IBIS (prior 5.0) included into the impulse response

- Tx, anlg: Pkg + PCB + Connector + PCB + Pkg

- Rx, anlg: Rx, CDR, EQ

- Tx DLL → Analog Channel → Rx DLL

- IBIS-AMI
Data flow of IBIS-AMI

Convolution with algorithm models

Responses of entire channel
Channel coupling
Multi-channel examples

Sample
General user requirements

- Coupling effects from multiple channels (aggressors) — With signals being transferred in both directions
- Tx and Rx of all the channels are represented by IBIS-AMI models
Practice of channel crosstalk measurements

- Channel models for both victim and aggressors are measured s-parameters in .s4p files.
 - In general, there are $N + 1$.s4p files with one as victim model and rest as crosstalk models.
- The channel simulation tool should perform simulation on the victim channel with aggressors’ effects included.

![Diagram of channel crosstalk measurements](image)
Characterizing coupled channels
Channel responses

- Same methodologies used for victim channels and aggressors
Generating crosstalk responses

Two approaches to generate the crosstalk responses in time domain

— The first approach
 – Assumes linearity of the output (or input) characteristic of a driver (or receiver) to be linear
 – With known corresponding impedance
 – Produce the transfer function of crosstalk in frequency domain from one channel input to another probing point
 – This transfer function is later converted into time domain response through iFFT

— The second approach
 – Considers the non-linearity of a driver (or receiver)
 – Channel termination conditions may be unknown
 – Conduct characterization with time domain simulation
Simulation methods of channel crosstalk: synchronous and asynchronous
Possible choices of crosstalk simulation methods

- Synchronous time-domain crosstalk
- Synchronous statistical crosstalk
- Asynchronous time-domain crosstalk
- Asynchronous statistical crosstalk
Synchronous method

Assumptions
- Constant phase of transitions
 - between different crosstalk channels
 - between every crosstalk and signal channel

BER description

\[P_{\text{xtalk}_i} = P(V,t), i = 1,2,... \]

Advantage
- Able to consider the effects from many fine causes
 - Such as mutual delays between rising/falling edges in different channels

Limitations
- Requires many parameters to be specified
 - Including the input pattern and encoding, and possible jitter distribution
Asynchronous method

- Assumptions
 - Phases in different channels are statistically independent
 - May have arbitrary relationship with respect to each other and to the clock of the signal channel

- BER description

\[
P_{\text{xtalk}_i}(V) = \frac{1}{T} \int_0^T P(V,t)dt, i = 1,2,\ldots
\]

- Advantages
 - Phases in different channels are statistically independent

- Limitations
 - Crosstalk effect on the final eye diagram becomes averaged out along the unit UI
Analysis examples and discussions
Coupled channels

- Sample topology
Crosstalk effects simulated with different approaches

- No crosstalk effect included in simulation
Crosstalk effects simulated with different approaches (cont’)

- Using statistical asynchronous approach
Crosstalk effects simulated with different approaches (cont’)

- Using statistical synchronous approach
Crosstalk effects simulated with different approaches (cont’)

- Using time domain asynchronous approach
Crosstalk effects simulated with different approaches (cont’)

- Using time domain synchronous approach
Summary
Conclusions

- It is important to understand the advantages and limitations of using multiple 4-port S-parameter models in channel study.

- For the two simulation approaches on channel crosstalk, either of the synchronous nor asynchronous method is perfect.
 - The decision of using one of the methods can be design-dependent.

- The information provided by each method helps designers understand the behavior of coupled serial links.
 - Guide designers in high-data rate channel designs.