Board-only Power Deliver Prediction for Voltage regulator and Mother Board Designs

Intel Corporation
Data Center Platform Application Engineering
November 21, 2011

Asian IBIS Summit
Taipei, Taiwan

Jiangqi He
Y.L. Li

Previously given at
Asian IBIS Summit on
November 15, 2011
Legal Disclaimer

Notice: This document contains information on products in the design phase of development. The information here is subject to change without notice. Do not finalize a design with this information. Contact your local Intel sales office or your distributor to obtain the latest specification before placing your product order.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications, product descriptions, and plans at any time, without notice.

This document contains information on methods under development, is subject to change without notice, and may not reflect the best practices for all participants. Check with your equipment vendor for the latest information on best practices for their equipment. Ultimate responsibility for measurement accuracy lies with those performing measurements, and their methods should be properly evaluated for accuracy.

All products, dates, and figures are preliminary for planning purposes and are subject to change without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel’s website at http://www.intel.com.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2011, Intel Corporation. All Rights Reserved.
Agenda

• Introduction
• Simplified SPICE Model
• Case Study and Its Application
• Validation
• Summary and Next Steps
Agenda

✓ Introduction
 • Simplified SPICE Model
 • Case Study & Its Application
 • Validation
 • Summary & Next Steps
Introduction

Power delivery performance prediction typically is using full wave solvers to extract board, socket, package, and on-chip interconnect. There are many tools and approaches across industries.

However, this typical approach is usually focusing on high frequency noise, involving many piece of software and has certain limitations:

• Very high frequency oriented analysis. Typically looking for many 100s MHz or GHz range
• Extracted full wave S parameters needs macro-modeling for transient analysis
• All full wave solvers has accuracy limitation at low frequency and board analysis needs very accurate low frequency prediction
• Full wave extraction and its associated analysis do not have full explicit information on return path (GND) which is critically important for board design and optimizations.
• Typically full wave approach takes much more time to complete an analysis cycle and also needs electro-magnetics background for many uncertain scenarios during modeling/sims
• Due to its complexity, some OEM/ODM skip prediction step and go directly for testing vehicles
• Therefore, a method that involves less steps, easy to understand, good low frequency accuracy and high efficiency is highly desired!
Introduction (cont’d)

A new methodology is called ‘Simplified SPICE Model’. It allows companies to conduct simulations focused on the follows:

- Determine # of MB layers and stack-up
- Choose MB cap types, numbers and locations
- Check the coupling noise due to imperfect common ground
- Validate MB and VR performance in early development stage
- Reduce design cycle time due to faster simulations
- A lot more accurate at low frequency regions.
- Explicitly know exactly return currents
- Least software involvement
- An entry engineer can conduct modeling/simulations
Agenda

- Introduction
- ✔ Simplified SPICE Model
- Case Study and Its Application
- Validation
- Summary and Next Steps
A Typical Network for MB Power Delivery Analysis

MB R network start from VR output Buck Cap

Use Icc / Isa / Itt current Models to replace Die+package models and represent VRTT

MB R network end at Socket pins

Conventional PD Models:
Die (on-die caps) + Package(with caps) + socket + MB + MB/Bulk caps + VR

Simplified SPICE Model for OEMs/ODMs:
VRTT (Icc/Isa/Itt) + socket + MB + MB/Bulk Caps + VR
Simplified SPICE Model Workflow

Step 1. Create MB model
- Create R-network using EDA tool.
- Set up port locations for cap terminations and Vcore, Vsa, Vtt, and socket locations.

Step 2. Socket model
- Get socket pin map from supplier.
- Get R & L values of each socket pin from supplier.
- Group socket pins and scale R & L values.

Step 3. Icc, Isa, Itt models
- Get I (t) model from supplier

Step 4. VR model
- Use simple VR model from supplier.

Step 5. Connect all models together and run transient simulations
- Vcore(t), Vsa(t), Vtt(t) separately

Step 6. Compare V(t) with DC and Transient Requirements
For VR design: we’ll provide current models of Vcore, Vsa, and Vtt and indicate the locations of the socket pins to connect your MB. MB models will only include R from Power/Ground planes and vias.
I(t) Models of Vcc/Vsa/Vtt

A server CPU
150 W PVCCP (8 core)

Max step load size = 100 A
Max step load slew rate \(\frac{di}{dt} \leq 200 \text{ A/}\mu\text{s} \)

A server CPU PVSA

Max step load size = 7 A (Current pulse duration <1\(\mu \text{s} \))
Max step load slew rate \(\frac{di}{dt} \leq 4.0 \text{ A/}\mu\text{s} \)

A server CPU PVTT

Max step load size = 5 A
Max step load slew rate \(\frac{di}{dt} = 20 \text{ A/}\mu\text{s} \)
Socket Connections (Top MB Layer, 1 of 5)

<table>
<thead>
<tr>
<th>MB nodes</th>
<th>PKG nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VCCU pins</td>
</tr>
<tr>
<td>AB33</td>
<td>bx11y20</td>
</tr>
<tr>
<td>AA33</td>
<td>bx11y21</td>
</tr>
<tr>
<td>Y33</td>
<td>bx11y22</td>
</tr>
<tr>
<td>W33</td>
<td>bx11y23</td>
</tr>
<tr>
<td>V33</td>
<td>bx11y24</td>
</tr>
<tr>
<td>U33</td>
<td>bx11y25</td>
</tr>
<tr>
<td>T33</td>
<td>bx11y26</td>
</tr>
<tr>
<td>R33</td>
<td>bx11y27</td>
</tr>
<tr>
<td>BA28</td>
<td>bx16y1</td>
</tr>
<tr>
<td>AY28</td>
<td>bx16y2</td>
</tr>
<tr>
<td>AW28</td>
<td>bx16y3</td>
</tr>
<tr>
<td>AV28</td>
<td>bx16y4</td>
</tr>
<tr>
<td>AU28</td>
<td>bx16y5</td>
</tr>
<tr>
<td>AT28</td>
<td>bx16y6</td>
</tr>
<tr>
<td>AR28</td>
<td>bx16y7</td>
</tr>
<tr>
<td>AP28</td>
<td>bx16y8</td>
</tr>
<tr>
<td>AN28</td>
<td>bx16y9</td>
</tr>
<tr>
<td>AM28</td>
<td>bx16y10</td>
</tr>
<tr>
<td>AL28</td>
<td>bx16y11</td>
</tr>
<tr>
<td>AK28</td>
<td>bx16y12</td>
</tr>
<tr>
<td>BA27</td>
<td>bx17y1</td>
</tr>
<tr>
<td>AY27</td>
<td>bx17y2</td>
</tr>
<tr>
<td>AW27</td>
<td>bx17y3</td>
</tr>
<tr>
<td>AV27</td>
<td>bx17y4</td>
</tr>
<tr>
<td>AU27</td>
<td>bx17y5</td>
</tr>
<tr>
<td>AT27</td>
<td>bx17y6</td>
</tr>
<tr>
<td>AR27</td>
<td>bx17y7</td>
</tr>
<tr>
<td>AP27</td>
<td>bx17y8</td>
</tr>
<tr>
<td>AN27</td>
<td>bx17y9</td>
</tr>
<tr>
<td>AM27</td>
<td>bx17y10</td>
</tr>
<tr>
<td>AL27</td>
<td>bx17y11</td>
</tr>
<tr>
<td>AK27</td>
<td>bx17y12</td>
</tr>
</tbody>
</table>

You may need to lump several pins as one node.
Stackup (6 layer)

<table>
<thead>
<tr>
<th>Layer Name</th>
<th>Plane Description</th>
<th>Layer Thickness (mil)</th>
<th>Copper Weight (oz)</th>
<th>Dielectric (eR)</th>
<th>tand (max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal 1</td>
<td>solder mask</td>
<td>0.50</td>
<td></td>
<td>3.8</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>SIGNAL</td>
<td>1.90</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>prepreg and/or Core</td>
<td>2.70</td>
<td></td>
<td>4.0</td>
<td>0.022</td>
</tr>
<tr>
<td>Plane 2</td>
<td>GND</td>
<td>1.30</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prepreg</td>
<td>4.00</td>
<td></td>
<td>4.1</td>
<td>0.022</td>
</tr>
<tr>
<td>Signal 3</td>
<td>SIGNAL</td>
<td>1.30</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>core</td>
<td>39.00</td>
<td></td>
<td>4.0</td>
<td>0.022</td>
</tr>
<tr>
<td>Signal 4</td>
<td>SIGNAL</td>
<td>1.30</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prepreg</td>
<td>4.00</td>
<td></td>
<td>4.1</td>
<td>0.022</td>
</tr>
<tr>
<td>Plane 5</td>
<td>GND</td>
<td>1.30</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDD</td>
<td>1.30</td>
<td></td>
<td>4.0</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>prepreg and/or Core</td>
<td>2.70</td>
<td></td>
<td>4.0</td>
<td>0.022</td>
</tr>
<tr>
<td>Signal 6</td>
<td>SIGNAL</td>
<td>1.90</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>solder mask</td>
<td>0.50</td>
<td></td>
<td>3.8</td>
<td>0.022</td>
</tr>
</tbody>
</table>

Total 62.40 (+8/-5)

You may want to get MB resistivity value from MB suppliers.
Simplified SPICE Model

Simplified Multiphase VRD (P1~P4) with Socket LoadLine

Simplified MB R network include Bulk Caps & Decoupling HF Caps

Icc / Isa / Itt current SPICE Model

Sensing at CPU Socket
SPICE Model Connection Block Diagram

- **Socket Model**
- **Icc Model**
- **VR Model**
- **MB R network Model**
- **Bulk Caps**
- **HF Caps**

- **P1**
- **P2**
- **P3**
- **P4**
- **Vsense +**
- **Vsense -**
- **GND**
- **MB SKT +**
- **MB SKT G**
- **Cap +**
- **Cap G**

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation the U. S. and other countries. Other names and brands may be claimed as the property of others. All products, dates, and figures are preliminary and are subject to change without any notice. Copyright © 2011, Intel Corporation.
DC Requirements

Socket Load Line

Vccmax Violation

Operation in this region may result in reduced life span due to processor/system heat damage. Also system speed degrades due to repeated transitions into low power state to cool processor.
DC Requirements (cont’d)

Operation in this region may result in system ‘lock-up’, system ‘blue-screen’, or corrupt data.

Vccmin Violation
Dynamic or Transient Requirements

Short transients above VID are permitted see the overshoot specification

Load step to Icc max
Agenda

- Introduction
- Simplified SPICE Model
 - Case Study and Its Application
 - Validation
 - Summary & Next Steps
Cost/Performance Optimization study of Cap number:

- **Case 1** ~ 10 μF 50 pcs / 22 μF 16 pcs / 470 μF 7 pcs
- **Case 2** ~ 10 μF 30 pcs / 22 μF 8 pcs / 470 μF 4 pcs

Top caps
- 25-10 μF
- 8-22 μF
- 2-470 μF bulk caps

Bottom caps
- 25-10 μF
- 8-22 μF
- 5-470 μF bulk caps
Case Study – Cost/Performance Optimization of Cap number

If transient design target is A, both Cases 1 and 2 fail.
If transient design target is B, Case 1 is fine but Case 2 fail.
If transient design target is C, both Cases 1 and 2 are fine.
Agenda

- Introduction
- Simplified SPICE Model
- Case Study and Its Application

✓ Validation

• Summary & Next Steps
Simulation Result vs. VRTT Test Result

Loading frequency = 305 Hz
Slew = 163 A/μS

1st spike reading:
1.058 V vs. 1.05 V @ 115 A to 25 A 8 mV difference only → 99.24% Accuracy

• Including more sophisticated VR model with FETs may be able to reduce Waveform Δ.
• Adding MB parasitic C & L should be helpful in reduction of waveform Δ as well.
Simulation Result vs. VRTT Test Result

Loading frequency = 305 Hz

Slew=163 A/μS

1st spike reading:

0.914 V vs. 0.932 V @ 25 A to 115 A **18 mV** difference only → **98.07% Accuracy**

- Including more sophisticated VR model with FETs may be able to reduce Waveform Δ.
- Adding MB parasitic C & L should be helpful in reduction of waveform Δ as well.
XYZ CRB Simulation Result vs. VRTT Test Result

Loading frequency = 12K
Slew=163A/μS

1st spike reading:

1.052 V vs. 1.054 V @ 115 A to 25 A 2 mV difference only → 99.8% Accuracy

0.914 V vs. 0.934 V @ 25 A to 115 A 20 mV difference only → 97.85% Accuracy

• Including more sophisticated VR model with FETs may be able to reduce Waveform Δ.
• Adding MB parasitic C & L should be helpful in reduction of waveform Δ as well.
Simulation Result vs. VRTT Test Result

Loading frequency = 275K
Slew=163 A/μS

1st spike reading:

1.064 V vs. 1.066 V @ 115 A to 25 A **2 mV** difference only → **99.8% Accuracy**

0.914 V vs. 0.94 V @ 25 A to 115 A **26 mV** difference only → **97.63% Accuracy**

- Including more sophisticated VR model with FETs may be able to reduce Waveform ∆.
- Adding MB parasitic C & L should be helpful in reduction of waveform ∆ as well.
XYZ CRB
Simulation Result vs. VRTT Test Result

Loading frequency = 650K
Slew=163 A/μS

1st spike reading:
1.034 V vs. 1.048 V @ 115 A to 25 A **14 mV** difference only → **98.66% Accuracy**
0.92 V vs. 0.93 V @ 25 A to 115 A **10 mV** difference only → **98.9% Accuracy**

- Including more sophisticated VR model with FETs may be able to reduce Waveform Δ.
- Adding MB parasitic C & L should be helpful in reduction of waveform Δ as well.
Simulation Result vs. Real VRTT Test Result

1st spike reading:
1.15 V vs. 1.143 V @ 165 A to 59 A 7 mV difference only
1.09 V vs. 1.095 V @ 59 A to 165 A 5 mV difference only

Simulation Result Accuracy higher then 99%
* (This case used a very sophisticated VR model from VR Vender.)
Agenda

- Introduction
- Simplified SPICE Model
- Case Study & Its Application
- Methodology Validation

✓ Summary and Next Steps
Summary and Next Steps

Simplified SPICE model has been validated by companies

Using the collaterals, companies can

- optimize their own designs & make their own decisions before Gerber Out to achieve the best cost/performance trade-off in
 - Determine # of MB layers & stack-up
 - Choose MB cap types, numbers & locations
- reduce risk of common ground noise coupling among Vcc, Vsa, Vtt, and Vddq
- validate their own designs after Gerber Out

Next Steps

- Obtain more sophisticated VR model from vendors
- Include thermal impact to more accurately predict Maximum Current can be carried.