Modeling the On-die De-cap of IBIS 5.0 PDN-aware Buffers

Lance Wang, lwang@iometh.com
IO Methodology Inc.
Randy Wolff, rrwolff@micron.com
Micron Technology
IBIS Summit (Taipei) Nov. 21st, 2011

Previously presented at the IBIS Summit (Shanghai) on November 15, 2011
Outline

- Introduction to IBIS 5.0 PDN modeling
- On-die de-coupling circuit
- A test case and workaround
- An issue?
- Conclusions
Introduction to IBIS 5.0 PDN Modeling

[Composite Current]

- Describes the shape of the rising and falling edge current waveforms from the power reference terminal of the buffer*
- Adds pre-driver current I-t data

* Text and image from IBIS 5.0 Specification
Introduction to IBIS 5.0 PDN Modeling

[ISSO PU] & [ISSO PD]

- Data tables define the effective current of the pullup/pulldown structures of a buffer as a function of the voltage on the pullup/pulldown reference nodes*.
- Adds modeling of the gate modulation effect on driver current (I_{DS} vs. V_{GS}).

* Text and image from IBIS 5.0 Specification
Introduction to IBIS 5.0 PDN Modeling

- IBIS 5.0 PDN modeling features are useful for SSN sensitive system designs
 - Parallel interfaces, Low power systems
 - Standard compliance models are interoperable and IP protected
- IBISCHK5 is up-to-date
 - Version 5.0.7 fixes BUG129
- At least 4 EDA simulators have implemented IBIS 5.0 PDN features
 - And more coming …
On-Die De-Coupling Circuit

* De-cap may be on the order of 500pF per buffer

* Image from IBIS 5.0 Specification
Test Case IBIS Model

Extracted IBIS 5.0 Model – no on-die de-cap model
Test Case – IBIS vs. SPICE

Validation with perfect power supply

Good Match!
Test Case – IBIS vs. SPICE

Validation with large R_pkg on power/gnd pins

Oops! Missing something?
Workaround

Validation with R_pkg on power/gnd pins

RC De-coupling circuit added into IBIS simulations
Workaround

Validating with R_pkg on power/gnd pins – added RC de-coupling circuit

Voltage @ pad

Now they match!

Current @ vccq

Current @ vssq
Modeling On-Die De-Cap

- IBIS 5.0 model extracted using the static power supply
 - IBIS model data doesn’t contain any info about de-coupling circuit between Vccq and Vssq
 - There is no place for us to add this info into the [Model] section
- Solution within existing IBIS Specification
 - Use IBIS “Series” Model type (e.g. [C Series], [Rc Series]) to model de-coupling circuit
 - Use [Series Pin Mapping] to connect with Power and GND pins

There is a problem!
What is the issue?

- The Series Model de-coupling circuit attaches at the [Component] Pin level, not inside the [Model]
 - On-Die de-coupling circuit belongs to each buffer
 - In most cases, multiple buffers share one power/gnd rail
 - The only way to model per-buffer de-cap is with a per-power bus model. This might not be the desired de-cap model.
Conclusion

- IBIS 5.0 [Model] does not contain any info about decoupling between Power and GND nodes
- On-die de-coupling circuit can be added outside of IBIS [Model] to achieve accuracy requirement
- Be careful using IBIS [Series Pin Mapping] feature for On-die De-coupling Circuit modeling
- BIRD145 might provide a solution
 - Would allow complex on-die de-cap model attached to each [Model] and modeling of other important PDN parasitics
Thank You