The Application of Simulation Kit Using USB3.0 IBIS-AMI Model

Motoaki Matsumura
FUJITSU SEMICONDUCTOR LIMITED

Asian IBIS Summit
Yokohama, JAPAN
November 16, 2012
Outline

- USB3.0 Compliance Simulation using IBIS-AMI Model

- Summary

- Expectation of IBIS-AMI
Outline

■ USB3.0 Compliance Simulation using IBIS-AMI Model

■ Summary

■ Expectation of IBIS-AMI
Chip-PKG-PCB Co-Design of SerDes I/F

- 5Gbps SerDes I/F become prevalent, for example USB3.0.
- We want to bring a new product to market more quickly.

Performance is improved.
How we balance TAT with cost?

In addition to performance, TAT and cost are important.

Performance is important.

In this presentation, I will focus attention on USB3.0.

Time to market
Product cycle is short
[Conclusion] : Only 0.5h for USB3.0 Analysis

- Measurement vs Simulation

IBIS-AMI enables a high accuracy and short TAT analysis.

Simulation is possible many times at the initial designing stage.

Spice Net Transient Analysis
Simulation time: 1Mbit(Conversion), 120,000h

IBIS-AMI Channel Analysis
Simulation time: 1Mbit, 0.5h

1000Bit 12h
1/240,000

match
match
USB3.0 Compliance Test Simulation Kit

USB3.0 Compliance Test Simulation Kit on EDA Tool

Semiconductor Vendor

1. Simulation Kit that reflected reference design.
2. Customer can judge the quality of own design quantitatively.
3. Customer can execute differential analysis in a short TAT. (IBIS-AMI + EDA tool)

Customer

4. The support of customer's difference analysis is easy.
5. EDA tool support.

EDA Vendor

Simulation Kit can prevent the troubles, for example mismatch between IBIS-AMI and EDA tool, the usage of EDA tool.
Contents of Simulation Kit

Simulation Kit

Reference Design

Stimulus

Bit Pattern

IBIS-AMI

Tx Model

S-Para

PKG Model

S-Para

PCB Artwork

PCB Guide

Ball Assign

Simulation Deck

Connector

R1

1.0 milliohms

R2

1.0 milliohms

Sim Result

Eye Mask

Rx Model

IBIS-AMI

Cable + Back Panel

Reference Cable(3m)

Reference Back Panel

RX(w/ CTLE)
Compliance Test Pattern (Stimulus)

USB3.0 Tx Compliance Test Pattern & Transmitter Eye

“Universal Serial Bus 3.0 Specification Revision 1.0”

Table 6-7. Compliance Pattern Sequences

<table>
<thead>
<tr>
<th>Compliance Pattern</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP0</td>
<td>D0.0</td>
<td>scrambled</td>
</tr>
<tr>
<td>CP1</td>
<td>D10.2</td>
<td>Nyquist frequency</td>
</tr>
</tbody>
</table>

CP0 : 8B/10B pattern (PRBS is encoded)

Eye Height, Jitter(10^{-12}BER) Measurement

$CP0 \times 10^6 \text{ UI} + CP1 \times 10^6 \text{ UI}$

Simulation time is too long in Spice Net Transient Analysis

about 5000 days!

Channel Analysis using IBIS-AMI

about 0.5 hours!
Channel Analysis

1. Analog Channel Impulse Response Process

2. Convolution Process

We can execute the analysis of 1 million bits in 0.5 hours.
Characteristic of IBIS-AMI

IBIS-AMI

IBIS-AMI: Algorithmic Modeling Interface

User can not correct IBIS-AMI, because AMI parts are black box.

Model maker should verify the quality of own IBIS-AMI. (each OS, EDA tool)

[Algorithmic Model]

IBIS Example

Executable Windows_VisualC_32 TX_Wx32.dll TX.ami
Executable Windows_VisualC_64 TX_Wx64.dll TX.ami
Executable Linux_gcc4.4.2_32 TX_Lx32.so TX.ami
Executable Linux_gcc4.4.2_64 TX_Lx64.so TX.ami

[End Algorithmic Model]
Trouble Case of IBIS-AMI Analysis (1/2)

Model dependence

CTLE characteristic (Reference Equalizer)
CTLE: Continuous Time Linear Equalizer

Some EDA tools are OK. Others are NG.

All EDA tools are OK.
Trouble Case of IBIS-AMI Analysis (2/2)

- **Tool dependence**
 - Samples Per Bit Interval
 - => Default Setting

 Voltage level is out of order!

- **Samples Per Bit Interval**
 - => Recommended setting

 The setting value depends on modeling of IBIS-AMI. It is necessary to use the recommended value.

It is important that IBIS-AMI model maker solve various problems of “model and tool dependence”, before model maker release it.
Reference Design (Differential Analysis)

At the environment building

- **Ball Assign**
- **PCB Guide**
- **PCB Artwork**

Tx/Rx Model

- **IBIS-AMI**

Sim Result

- **Reference Cable+BP**
- **PKG Model**
- **PCB Model**

- **S-Para**

Compliance Test Simulation Kit

- **Assign**

At the actual design

- **Ball Assign'**
- **PCB Artwork'**

Customer Design

- **PKG Model'**
- **PCB Model'**

- **S-Para**

Compare

Differential Analysis

Copyright 2012 FUJITSU SEMICONDUCTOR LIMITED
Measurement Correlation (1/2)

Measurement environment

<table>
<thead>
<tr>
<th>Item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIP</td>
<td>USB3.0 Test Chip</td>
</tr>
<tr>
<td>PKG</td>
<td>Wire Bond BGA 4layer 256ball 27mm-square</td>
</tr>
<tr>
<td>PCB</td>
<td>6layer</td>
</tr>
<tr>
<td>PVT</td>
<td>Typical</td>
</tr>
</tbody>
</table>
Measurement Correlation (2/2)

Measurement vs Simulation

Models of Test Chip
We can examine cost reduction of the product by using Simulation Kit in a short TAT.
Outline

- USB3.0 Compliance Simulation using IBIS-AMI Model

- Summary

- Expectation of IBIS-AMI
USB3.0 Compliance Simulation using IBIS-AMI Model

- IBIS-AMI is a key technology of 5Gbps SerDes I/F analysis.
 - High accuracy
 - Short TAT

- It is important that IBIS-AMI model maker solve various problems between IBIS-AMI and EDA tool beforehand.

- Simulation Kit constructed on EDA tool is able to contribute to short TAT analysis and cost reduction of the product.

Copyright 2012 FUJITSU SEMICONDUCTOR LIMITED
Outline

- USB3.0 Compliance Simulation using IBIS-AMI Model
- Summary
- Expectation of IBIS-AMI
Expectation of IBIS-AMI

- We expect more information about IBIS-AMI.
 - Documents (IBIS-AMI Cookbook, Trouble shooting)
 - Samples (IBIS-AMI, Simulation result)
 - Visualization (EQ Characteristic)