Over-Clocking model validation

Asian IBIS Summit
Yokohama, JAPAN
November 16, 2012

Toshiba Corporation
Digital Products & Services Company
YASUKI TORIGOSHI

Copyright 2012, Toshiba Corporation.
About Over-Clocking
Validation (Remove initial delay)
Validation (Cut tail)
Discussion
Expectations for IBIS
About Over-Clocking

Over-clocking creates waveform problems.

Usual behavior (waveform length less than 1bit length)

Overclocking (1bit length less than waveform length)

High frequency
Cookbook strongly recommends we don’t use overclocking.

5.4.2 V-T Table Windowing

One procedure, which is not performed by most automated IBIS creation tools, is V-T table windowing. While there is no upper limit on the time duration of V-T tables, the transient portion of the waveforms should start and finish within the time dictated by the highest frequency of the buffer (one-half of the period).

While not an IBIS requirement, users are strongly recommended to generate V-T tables that are shorter in duration than the pulse width of the highest frequency anticipated on the interface. For example, a signal that is anticipated to drive, at maximum, 100 MHz signals should have a V-T table duration no greater than 5 ns (the period of a 100 MHz signal is 10 ns; such a signal’s pulse width – longest “high time” or longest “low time” – is 5 ns).

Note that this may limit the types of buffer applications appropriate for modeling under IBIS. Transistor-level models may permit switching of buffer outputs before they have completely finished a transition. However, IBIS version 4.0 assumptions do not cover this situation and buffer response for such a model may be inconsistent across EDA tools implementing IBIS.

We must create short duration waveform.
Problem: A lot of buffer can't rise/fall within 1 bit length.

Buffer A

Max bit rate
640Mbps = 1.5625nsec

2.8nsec

Buffer B

Max bit rate
1Gbps = 1nsec

3.413nsec
Question

Question: really problem?

No remove initial delay

No cut tail
Evaluation circuit No.3

Checked using the following circuit.

![Circuit Diagram](image)

- **VIN**
- **DINP**
- **DOUTP**
- **DOUTN**

- **Z0 = 50 Ohms**
- **td = 145 ps**

- **Probe**

- **Tr = 100 ps**
- **Tf = 100 ps**

- **2 pF**
No remove initial delay model at non overclocking

Good for buffer delay at non overclocking

Simulator: A
No remove initial delay model at overclocking

Doesn’t work with overclocking mode

Simulator: A
Remove initial delay

Removing initial delay is effective. But How we should do?

IBIS model diff output P-ch & N-ch

SPICE model diff output P-ch & N-ch

Simulator : A

Simulator : B

Different result simulator A and B
Remove initial delay

Removing initial delay is effective. But How we should do?

2\text{nsec}

remove initial delay
And cut tail
But it is still overclocking

0.2\text{nsec}

same result simulator A and B
Evaluation about Cutting tail

We prepared four models. All models remove initial delay.

End time = 18nsec

End time = 4nsec

End time = 2nsec

End time = 1.56nsec

Test circuit Bitrate is 640Mbps = 1.5625nsec

Non overclocking

Error: V-I matching
Evaluation circuit No.1

320 MHz
Tr = 100 ps
Tf = 100 ps

VIN

DINP

DOUTP

DOUTN

50 Ohms

probe
Result : Evaluation circuit No.1 (typ)

End time = 18nsec

End time = 4nsec

End time = 2nsec

End time = 1.56nsec

SPICE

IBIS

good

bad
Result: Evaluation circuit No.1 (typ) Focus to first 3bits

End time = 18 nsec

End time = 4 nsec

End time = 2 nsec

End time = 1.56 nsec

SPICE

IBIS
Evaluation circuit No.4

- VIN
- DINV
- DOUTP
- DOUTN
- 2 pF
- 50 Ohms
- Z0 = 50 Ohms
d = 145 ps

320MHz (640Mbps)
PRBS
Tr = 100 ps
Tf = 100 ps
probe
Result: Evaluation circuit No.4 (typ)

- Good: End time = 18nsec
- Good: End time = 2nsec
- Bad: End time = 1.56nsec
- Good: End time = 4nsec
Result: Evaluation circuit No.4 (typ) Focus to fast 3bits

End time=18nsec

End time=4nsec

End time=2nsec

End time=1.56nsec
Result: Evaluation circuit No.4 (typ) long view

End time = 18 nsec

End time = 2 nsec
Result: Evaluation circuit No.4 (typ) eye-pattern

- Appearing jitter?
 - End time = 18 nsec

- Good Rise/Fall time.
 - End time = 2 nsec
Discussion

We should improve IBIS specification.

- No-definition about shorter waveform is greatly problem.
 - We get differential result by simulators.
 - It is unhappy for users and creators.
 - We should improve IBIS specification about waveform.

- By some simulators, even if it carries out neither remove initial delay nor cut tail, there are the following advantages.
 - It can express to delay of a buffer.
 - It can express to jitter of a buffer.
Suggestion

There is power supply waveform [Composite Current] in IBIS5.0.

It is hard to create short waveform IBIS, taking time compatibility.

- Suggestion (as one solution)
 - IBIS specification change that all procedure of cutting waveform should do on simulator.
 - No-remove initial delay and no-cut tail waveform IBIS have more information than now.
 - As the result does not difference between the simulator, IBIS specifications must decide the simulation method.
 - This is useful also for creators also for users.
Expectations for IBIS

I want IBIS to continue to be everybody’s lingua franca.

- Although the new formats such as IBIS-AMI has come out, We want IBIS to continue the environment which can do conversation.
 - A different large scale integration (LSI) maker’s model can simulate in the same environment?
 - We want the viewer which can check the characteristic and a preset value.
 - Manufacturing characteristics of LSI contains really? It has not been discussed in the design value of the buffer?

- Standards such as PCI-Express-gen3 and DDR3 is implementing a calibration value of ZQ and equalizer before communicating.
 - We hope that IBIS will automatically set the calibration value in the actual behavior.
 - We will be able to simulate more easily.