Handling of Overclocking Caused by Delay in Waveform Tables

Radek Biernacki and Ming Yan, Keysight Technologies
Randy Wolff and Justin Butterfield, Micron Technology

IBIS Summit
Taipei, Taiwan, November 17, 2014
(presented by Lance Wang, IO Methodology)
What is Overclocking

- A trigger event happens during transition from the low/high state to the high/low state
- The trigger event initiates transition in the opposite direction
- Interrupted transitions are **NOT** the intended operation
- The IBIS specification does not provide any means to determine buffer behavior upon interrupted transitions
True Overclocking

• Not discussed here – we are not trying to impose any restrictions or interpretation of true overclocking

long flat tail can be ignored

interrupted transition

UI=250ps

trigger events
Power Aware IBIS Models

- Two types of waveform tables are used: the classic voltage tables and the (composite) current tables
- The driver voltage transition may be significantly delayed with respect to the pre-driver current
- The two waveform tables need to be recorded in the IBIS file using the same absolute time scale and be time aligned
- The driver voltage transition may be valid for faster bit rates than those corresponding to the overall time span of the combined waveform tables
Typical Combined Waveform Data

Pre-driver current 300ps
Driver switching 500ps
Dead time 370ps
Fictitious Overclocking in Power Aware Models

- For these waveforms:
 - The Driver switching occurs within a 500ps window.
 - Thus, a bit time of 500ps or greater should not cause true overclocking problems.
 - Fictitious overclocking if delay is not properly handled.
What EDA Platforms Do About It

• Several ways to address it
 – The user can specify the amount of initial delay to ignore
 – Automatically detect the amount of initial delay to ignore
 – Do nothing (no special “windowing” applied)

• Neither of the approaches is correct nor desired
 – Potentially inconsistent simulation results, or
 – Declared “overclocked” operation
Who the Decision Belongs To

ONLY THE MODEL MAKER KNOWS THE EXACT AMOUNT OF DELAY TO REMOVE
IBIS BIRD 168.1 – “Handling of Overclocking Caused by Delay in Waveform Data”

• Approved for the next version of the IBIS spec (after 6.0)
• Proposes a new keyword under the [Model] keyword
 [Initial_Delay]
• The new keyword is optional
• One or two sub-parameters can be specified
 V-T and/or I-T

http://www.eda-stds.org/ibis/birds/bird168.1.docx
Example of V-T Sub-parameter Data

- The same value of the initial delay specified for V-T sub-parameter applies to all voltage tables in the [Model]

Max corner initial delay = 140ps

Typ corner initial delay = 155ps

Min corner initial delay = 190ps
Example of I-T Sub-parameter Data

- The same value specified for I-T sub-parameter applies to all current tables in the [Model]

Min/Typ/Max corner
initial delay = 5ps
How the Initial_Delay Values are Applied

• The initial delay value is first removed (subtracted) from the time values in the first column of the corresponding tables
• The same value is used to delay the trigger events which activate any of the corresponding tables
• This shortens the transition times accordingly, allowing higher bit rate signals to be properly simulated
• Following the specified initial delay values will make the simulation results consistent across all EDA platforms
Example of Specifying Initial Delay in an IBIS File

[Model]

[Initial Delay] | This keyword specifies removable delay(s)
time table	typ	min	max
V-T	0.20e-9	0.22e-9	0.18e-9
I-T	0.05e-9	NA	NA

• Up to three columns with three IBIS corner values
Example:
LPDDR4 3200Mbps

- UI = 312.5ps
- Duration of the waveform tables = 920ps
Summary

• A new keyword will be added to the next version of the IBIS spec
• It will unify the way the initial delay is handled, making the simulation results consistent across different EDA tools
• It adds complexity to the triggering algorithms inside of the EDA simulator tools for the benefit of the IBIS model users