IBIS Simulation for High-Speed Memory Interface Board
Suggestions : How to use IBIS model correctly

Masaki Kirinaka, Akiko Tsukada
FUJITSU INTERCONNECT TECHNOLOGIES LIMITED

Asian IBIS Summit
Tokyo, JAPAN
November 16, 2015
Agenda

- IBIS Model Quality the past, the present
- Example of incorrect simulation
- Suggestion to EBD specifications for DIMM simulation
- Summary
IBIS Model Quality the past, the present
Started board simulation using the IBIS model in 1999. At that time IBIS model was Ver3.1. The IBIS Model quality was poor in those days.

Ex.1) There was no PKG parameter.

```
<table>
<thead>
<tr>
<th>Component</th>
<th>XXXXXXXXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>ABC Company</td>
</tr>
<tr>
<td>Package</td>
<td></td>
</tr>
<tr>
<td>variable</td>
<td></td>
</tr>
<tr>
<td>typ</td>
<td></td>
</tr>
<tr>
<td>min</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td></td>
</tr>
</tbody>
</table>
R_pkgg           | 0.000     |
L_pkgg           | 0.000nH   |
C_pkgg           | 0.000pF   |
```

DIP
(Dual Inline Package)
Ex.2) A value of C_comp was incorrect.

[Model] LVTTL_12mA
Model_type I/O
Polarity Non-Inverting
Enable Active-Low
Vinl = 0.8
Vinh = 2.0
Vmeas = 1.65V
Cref = 0.0F
Rref = 50.000
Vref = 0.0V
C_comp 0.0pF 0.0pF 0.0pF
IBIS Model Quality the past, the present

Ex.3) V-I Curve of Input Buffer with Internal Pulldown was incorrect.
Checked the IBIS model carefully.

Corrected the incorrect part of IBIS Model.

[Model] LVTTL_12mA
Model_type Input
Vinl = 0.8
Vinh = 2.0
C_comp 0.0pF 0.0pF 0.0pF

[Model] LVTTL_12mA
Model_type Input
Vinl = 0.8
Vinh = 2.0
C_comp 1.0pF 0.8pF 1.2pF
The quality of the recent IBIS Model has been improved.
Few incorrect values are seen.
Therefore IBIS Model could be used without careful inspection.
With adding [Model Spec]'s subparameters
(S_overshoot_high, S_overshoot_low, D_overshoot_high,
D_overshoot_low, D_overshoot_time) to IBIS Model,
simulation can be started immediately.
Correct result is provided in most of the cases.
Reason to get incorrect simulation result in such situation.
- Missed instructions provided in [Notes].
- The IBIS keyword that a simulator supports is not known.
Example of incorrect simulation

- Ex.1) Attention to model usage in [Notes]
- Ex.2) The IBIS keyword that a simulator supports
- Ex.3) Modeling method of Output buffer
Ex.1) Attention to model usage in [Notes]

Demand of the circuit designer

Choice of the simulation engineer

Mode Register

<table>
<thead>
<tr>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>ODT [Ohm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OFF</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>XX</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>YY</td>
</tr>
</tbody>
</table>

IBIS Model

[Model Selector] INPUT

IN_ODT_OFF	“No ODT”
IN_ODT_xx	“xx Ohm ODT”
IN_ODT_yy	“yy Ohm ODT”

Noise Margin ≈ 0

The amplitude of the waveform doesn’t meet spec.

Simulation engineer: Need to check contents of IBIS to find the reason.
Ex.1) Attention to model usage in [Notes]

Demand of the circuit designer

<table>
<thead>
<tr>
<th>Mode Register</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>ODT [Ohm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>XX</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>YY</td>
</tr>
</tbody>
</table>

Choice of the simulation engineer

IBIS Model

[Model Selector] INPUT

IN_ODT_OFF	“No ODT”
IN_ODT_xx	“xx Ohm ODT”
IN_ODT_yy	“yy Ohm ODT”

Right Choice

There is the explanation of the model choice corresponding to the register setting in [Notes] and “Readme.txt”
Ex.2) The IBIS keyword that a simulator supports

DDR3L SODIMM Clock Waveform (The first simulation)

![Waveform Diagram]

The amplitude of the waveform doesn’t meet spec.

Long Trace

Long trace is causing the problem?
Ex.2) The IBIS keyword that a simulator supports

DDR3L SODIMM Clock Waveform (After a trace length change)

The amplitude of the waveform is still not good.

Reason?
Check the Buffer model and IBIS to find other causes.
Ex.2) The IBIS keyword that a simulator supports

Cause:

- Die capacitance subparameter of the memory’s IBIS:

 \[C_{\text{comp_power_clamp}}, C_{\text{comp_gnd_clamp}} \]

- The simulator does not support those subparameters. Therefore the simulator judged that there was no \(C_{\text{comp}} \). And simulator’s default \(C_{\text{comp}} \) was added to IBIS by an automatic correction mechanism.

- Added \(C_{\text{comp}} > C_{\text{comp_power_clamp}} + C_{\text{comp_gnd_clamp}} \)
 So a waveform was destroyed by a reflection noise by the big input capacitance.

- The simulator gave a message as follows, but continued processing.
 - Warning that there is no \(C_{\text{comp}} \).
 - Warning that simulator will use default \(C_{\text{comp}} \).
Ex.2) The IBIS keyword that a simulator supports

DDR3L SODIMM Clock Waveform (After C_comp correction)

The amplitude of the waveform is good.
For the accurate modeling of the output buffer, it is necessary to use two [Rising Waveform] and two [Falling Waveform].

(Accuracy of the modeling: two[Rising Waveform] & two[Falling Waveform] > [Ramp])

[Ramp] may be used for modeling by the following causes.
- Setting of the simulator
- Start times of four Waveforms are different. (See below.)

[Rising Waveform]
- **V\textunderscore fixture** = 0.6750
- **R\textunderscore fixture** = 25.0000

<table>
<thead>
<tr>
<th>time</th>
<th>V\text{(typ)}</th>
<th>V\text{(min)}</th>
<th>V\text{(max)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01pS</td>
<td>0.21V</td>
<td>0.26V</td>
<td>0.18V</td>
</tr>
<tr>
<td>30.00pS</td>
<td>0.21V</td>
<td>0.26V</td>
<td>0.18V</td>
</tr>
</tbody>
</table>

[Falling Waveform]
- **V\textunderscore fixture** = 0.6750
- **R\textunderscore fixture** = 25.0000

<table>
<thead>
<tr>
<th>time</th>
<th>V\text{(typ)}</th>
<th>V\text{(min)}</th>
<th>V\text{(max)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03pS</td>
<td>1.12V</td>
<td>0.99V</td>
<td>1.21V</td>
</tr>
<tr>
<td>30.00pS</td>
<td>1.12V</td>
<td>0.99V</td>
<td>1.21V</td>
</tr>
</tbody>
</table>

[Rising Waveform]
- **V\textunderscore fixture** = 0.0
- **R\textunderscore fixture** = 25.0000

<table>
<thead>
<tr>
<th>time</th>
<th>V\text{(typ)}</th>
<th>V\text{(min)}</th>
<th>V\text{(max)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00pS</td>
<td>0.0V</td>
<td>0.0V</td>
<td>0.0V</td>
</tr>
<tr>
<td>30.00pS</td>
<td>0.0V</td>
<td>0.0V</td>
<td>0.0V</td>
</tr>
</tbody>
</table>

[Falling Waveform]
- **V\textunderscore fixture** = 0.0
- **R\textunderscore fixture** = 25.0000

<table>
<thead>
<tr>
<th>time</th>
<th>V\text{(typ)}</th>
<th>V\text{(min)}</th>
<th>V\text{(max)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02pS</td>
<td>0.82V</td>
<td>0.63V</td>
<td>0.97V</td>
</tr>
<tr>
<td>30.00pS</td>
<td>0.82V</td>
<td>0.63V</td>
<td>0.97V</td>
</tr>
</tbody>
</table>
Ex.3) Modeling method of Output buffer

DDR3L DQ Waveform Comparison: [Waveform]×4 vs. [Ramp]

Waveform varies according to a modeling method.
Suggestion to EBD specifications for DIMM simulation

- Addition of a socket model element to EBD
- Support the Skin effect and the Dielectric loss for EBD line model
Addition of a socket model element to EBD

FPGA Parts No."IC1"

DIMM Socket Parts No."CN1"

Assign

Socket Model

EBD Model

Post-layout Simulation
Addition of a socket model element to EBD

Make a model to assign for DIMM socket "CN1"

Original EBD Model

[Path Description] 7
Pin 7
Len=0.2 L=3.5e-9 C=1.0e-12 R=0.1 /
Len=0 R=15 /
Len=0.1 L=3.5e-9 C=1.0e-12 R=0.1 /
Len=1.3 L=4.0e-9 C=1.2e-12 R=0.1 /
Len=0.1 L=3.5e-9 C=1.0e-12 R=0.1 /
Node Mem1.C7

EBD model after the socket model addition

[Path Description] 7
Pin 7
***** DIMM SOCKET
Len=0 L=1.0e-009 /
Len=0 C=1.0e-012 /
Len=0 R=1.0e-002 /
***** DIMM SOCKET

This can be done for simple models.

Need a better way for complicated models.
(S parameter, Complicated Spice Subcircuit)
Addition of a socket model element to EBD

Therefore suggestion is to be able to use S-element and X-element in EBD. (The S-element and the X-element are available in IBIS-ISS.)

Description example

```
[Path Description] 7
Pin 7
|***** DIMM SOCKET ********
| Port1_No. Port2_No. mname
| S 3 4 socket_spara /
|***** DIMM SOCKET ********
|Len=0.2 L=3.5e-9 C=1.0e-12 R=0.1 /
| Node Mem1.C7
```

Description example

```
[Path Description] 7
Pin 7
|***** DIMM SOCKET ********
| node_1 node_2 subckt_name
| X 5 6 socket_spice /
|***** DIMM SOCKET ********
|Len=0.2 L=3.5e-9 C=1.0e-12 R=0.1 /
| Node Mem1.C7
```
Addition of a socket model element to EBD

Description example (Continue from the previous page)

<table>
<thead>
<tr>
<th>Reference Designator Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref Des</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>R1</td>
</tr>
<tr>
<td>R2</td>
</tr>
<tr>
<td>Mem1</td>
</tr>
<tr>
<td>Mem2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mname</th>
<th>TSTONEFILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>socket_spara</td>
<td>dimm_soc.s4p</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>subckt_name</th>
<th>SUBCKTFILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>socket_spice</td>
<td>socket_mdl.sp</td>
</tr>
</tbody>
</table>

[End Board Description]
Support the Skin effect and the Dielectric loss for EBD line model

Example #1
【DDR3L SODIMM】Waveform comparison:
Line Model with LCR only(=EBD) vs. Line Model with Skin-Effect and Dielectric Loss

DDR3 Unbuffered SO-DIMM
Raw Card B
PC3-12800(DDR3-1600)

CLK (Mem3) 1558mV
DQx 1404mV

There is no difference.

11% Difference!!(CLK)
Support the Skin effect and the Dielectric loss for EBD line model

Example #2

【DDR4 SODIMM】Waveform comparison:
Line Model with LCR only(=EBD) vs. Line Model with Skin-Effect and Dielectric Loss

DDR4 Unbuffered SO-DIMM
Raw Card A

PC4-17000(DDR4-2133)

There is no difference.

-27% Difference!!(CLK)
Support the Skin effect and the Dielectric loss for EBD line model

Therefore suggestion is to be able to use W-element in EBD. (The W-element are available in IBIS-ISS.)

Conventional EBD

EBD example with skin-effect and dielectric loss

Add “Rs” and “Gd” to use the W-element for line model.
The quality of the recent IBIS Model has been improved.

Few models have incorrect values.

In most cases, correct result is provided by simulation.

Difference in Simulation Engineer’s skill (about IBIS, Simulator and Device) may make incorrect simulation result.

Suggested additions to the IBIS specification for EBD.
- Adopt X-element and S-element for inserting socket model to DIMM model.
- Adopt W-element “Rs”, “Gd” for Skin-Effect and Dielectric Loss.
Reference

- “IBIS Interconnect SPICE Subcircuit (IBIS-ISS) Specification Version 1.0”, IBIS Open Forum 2011
- “4.20.18 - 204-Pin DDR3 SDRAM Unbuffered SO-DIMM Design Specification“, 2015 JEDEC
- “Annex A, R/C A, in 260-Pin, 1.2 V (VDD), PC4-1600/PC4-1866/PC4-2133/PC4-2400/PC4-2666/PC4-3200 DDR4 SDRAM SODIMM Design Specification“, 2015 JEDEC
shaping tomorrow with you