Differential Modeling Flow with Series Model in Verilog-A

Asian IBIS Summit
Shanghai, China
November 11, 2016

Wei-hsing Huang, SPISim
Wei-hsing.Huang@spisim.com

Sanjeev Gupta, SigIntegrity-Solutions
sanjeev@sigintegrity-solutions.com
Agenda:

- Background & Motivation
- Verilog-A based modeling
 - Differential current
 - External model
- Flow & Validation
- Summary
- Q & A
Background: (1, IBIS CookBook V4)

- **Differential buffer:** True/Half/Pseudo differential.

- **[Diff Pin]:** describe differential behavior between two pins.

<table>
<thead>
<tr>
<th>Diff Pin</th>
<th>inv_pin</th>
<th>vdiff</th>
<th>tdelay_typ</th>
<th>tdelay_min</th>
<th>tdelay_max</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3</td>
<td>NA</td>
<td>NA</td>
<td>0ns</td>
<td>5ns</td>
<td></td>
</tr>
<tr>
<td>6 5</td>
<td>NA</td>
<td>NA</td>
<td>0ns</td>
<td>5ns</td>
<td></td>
</tr>
</tbody>
</table>
Method 1 for Half/True differential:

- [Series pin mapping]/Series Model: (2)(3)
Method 2 for Half/True differential:

- [External Model]: Spice/VHDL-AMS/Verilog-AMS/IBIS-ISS

Method 1 & 2 can be used together!
Background:
● Data extraction:
 ○ Common-mode current
 ○ Differential current
 ○ $C_{\text{comp}} \& C_{\text{diff}}$

Figure 4.13 – I-V Table Extraction Fixture for a Differential Buffer

Figure 4.18 – V-T Table Extraction Fixture for a Differential Buffer
Design 1:

I Comm. Mode as PU/PD, PC/GC

A simple “Series R” can describe this particular design

Shifted surface as differential series elem.
Design 2:

Need to describe this surface data in design 2 for V-T extraction
Affect DC steady states (e.g. mismatch)

Options:
- Surface fit in MSE sense:
 - Need to check residue
 - Translate to EFGH elements
- Series MOSFET
 - Or Series current
- Behavioral model?
Design 2 C_diff:

Need to describe this surface data for V-T extraction as well.
Affects final transient accuracy.

Options:
- Summarize and add single Series C
- Behavioral model?
Motivations:

- Limitation of “Generic” series model:
 - Accuracy of transient data for V-T extraction:

 ![Series diagram]

 Series Elements:
 1. Rigid syntax
 2. Condition is fixed (e.g. no polarity)
 3. Modeling flow interruption
 - a. Surface fit ?
 - b. Generate tentative series-elem?

 ![Diagram of series elements and waveform]

 Inaccurate TR data will pollute waveform...
Verilog-A based Diff. current model:

A Verilog-A device can be used in differential V-T extraction.

- Behavioral device is very versatile
- Support operator like ddt, if .. else
- Supports 1/2D look-up table (5), (6)
Verilog-A for V-T extraction:

Simulator only supports 1D table? 2D bi-linear look-up can still be done

Voltage & freq. Dependent C_Diff (or use cross() to find freq. dynamically)
Completed Series model:

- Verilog-A as external model for model type “Series”

- Verilog-A can work with existing (generic) series model to provide extra accuracy if needed.
Differential modeling flow:

1. Generate simulation inputs...
2. Simulate input files...
3. Generate model from simulation data...
4. Syntax check with golden parser...
5. Validate the generated model...
6. Generate performance reports...

- DC sweep for I-V PU/PD/PC/GC
- AC sweep for C_Comp/C_Diff
- Post-processing to calc DC I_Diff
- Post-processing to calc C_Diff
- Generate table .csv and .va file
- Simulate remaining V-T with diff. I subtracted
Modeling flow validation:

• Use an existing single-ended driver for P and N
• Insert approximate non-linear behavioral R/L/C elements between P and N outputs
• Flow should recreate same PU/PD/PC/GC as driver
• I-V surface plot should reveal inserted resistance
• C_Diff/C_Comp surface should reveal inserted cap
• Correlations of V-T table depends on I_Diff accuracies.
Summary:

● Verilog-A for differential V-T extraction
 ○ Versatile, supports many operators
 ■ E.g. ddt(Vx), $table_model for 1D/2D lookup
 ■ Streamlines modeling flow
 ○ Extract transient differential current
 ■ Improve V-T extraction accuracies
 ■ Use Verilog-A to remove rigid series syntax

● External model for “Series”:
 ○ [External model] supports “Series” type model
 ○ Can work with generic series model
References:

1. IBIS Cookbook V4
2. IBIS summit Jan/Mar 2001 by Hazem Hegazy (Mentor)
 https://ibis.org/summits/jan01/hegazy.zip
 https://ibis.org/summits/mar01/hegazy.zip
3. IBIS summit 2002 ~ 2004 by Arpad Muranyi (Intel)
 https://ibis.org/summits/oct02/muranyi.pdf
 https://ibis.org/summits/oct03/muranyi.pdf
 https://ibis.org/summits/feb04a/muranyi2.pdf
4. IBIS summit 2014 ~ 2015 by Shivani Shama et. al. (Cadence)
 https://ibis.org/summits/nov14b/sharma.pdf
 https://ibis.org/summits/nov15b/liang.pdf
5. Verilog A Language Reference Manual (LRM, Vendor Specific)
6. HSpice User’s Manual
Q & A
SPISim is an InSync member.