Case Study:
Modeling IBIS for Open_drain True Differential Pair Buffer

Lance Wang, IO Methodology Inc.
Yan Liang, Maxim Integrated

Asian IBIS Summit – Shanghai, China November 11th, 2016
Outline

- Open_drain Differential Pair Buffer Structure
- Review IBIS Modeling Method
 - Differential Pair Modeling Method
 - Output Type Buffer
 - Open_drain Type Buffer
- Practical Method for Open_drain Differential Pair Buffer
- Conclusions
Open_drain Differential Pair Buffer Structure
Review IBIS Modeling Method

- Differential Pair Modeling Method
- Output Type Buffer
- Open_drain Type Buffer
Differential Pair Modeling Method

- IBIS uses two single-end models to be a differential pair
- IBIS uses [Diff Pin] to define two pins to be a differential pair pins
- Uses two opposite inputs as required
Output Type Buffer (non-inverting)

Set Input LOW to extract Pullup curve
Set Input HIGH to extract Pulldown curve
Open_drain Type Buffer

Set Input HIGH to extract Pulldown curve
Set Input LOW to extract PowerClamp curve
Set Input LOW to extract GroundClamp curve
Practical Method for Open_drain Differential Pair Buffer

- As the normal method, we will use two Open_drain type IBIS models for Positive and Negative pins.
Let’s validate

The Topology for Validation
Validation Results

IBIS

SPICE

Mismatch
Root cause for mismatch and solution

- We missed some currents in the IBIS models
 - There is some current between P and N pins
 - IBIS Open_drain type model without Pullup curve. Assuming Pullup current is Zero

Solution

- We can use Output type model to capture all curve data
- However, we need to use Open_drain type setting to capture the data
New solution validation result

IBIS

SPICE
Conclusion

- Open_{drain} differential pair is a special case for IBIS modeling
 - IBIS Open_{drain} model is without the Pullup data
 - We need to use Output/IO type IBIS model to capture the Pullup data for this kind of differential pair buffer
 - However we need to IBIS Open_{drain} modeling setting for extractions
- IBIS C_{comp} needs to improve to be matched better
Currently, IBIS Spec only allows 4 values at the most

We might need to have more C_comp values according DC levels and frequency changes

Study is in process ...