

Best Case Analysis

Asian IBIS Summit Tokyo, Japan November 12, 2018

> Shinichi Maeda KEI Systems E-mail: KEI-Systems@jcom.home.ne.jp

Outline

- Typical Case? / Worst Case?
- Characteristics of IC
- New Feature of Future IO Device
- What is Best Case Analysis?
- How to Execute Best Case Analysis?
- IBIS-AMI

Typ/Min/Max

- IBIS Model has three cases
- Typ/Min/Max

[Model Spec] Subparame ⁻ Thresholds	ter typ	min	n	nax	[Pulldown] Voltage I(typ) I(min) I(max)
	2 5	0.15	2.05		-5.0V $-40.0m$ $-34.0m$ $-45.0m$
Vinn	3.5	3.15	3.85		-4.0V -39.0m -33.0m -43.0m
Vinl	1.5	1.35	1.65	30% of Vcc	
[Falling Wavefor R_fixture = 50 V_fixture = 5.5 V_fixture_min = V_fixture_max = Time 0.0000s 0.2000ns	orm] = 4.5 = 5.5 V(typ) 5.0000V 4.7470V	V(min 4.50 4.46) 00∨ 695∨	V(max) 5.5000V 4.8815V	IBIS Specification Version 6.1
					KEI Systems

Typ/Min/Max

Typ vs. Corner

Max

Min

- Model
 - DDR4 2400, DQ

KEI Systems

Characteristics of IC

- The Characteristics of IC has variation
 - The variation is normally distributed
- Variation of Lots, Within Wafer variation, Within Chip variation

Tolerance of IC Characteristics

DDR has Variation of I/O

- DDR4 Driver: 34 ohm, 40 ohm, 48 ohm
 - Pull-up : 3 Models are overlapped

DDR Driver's/Receiver's Characteristics

Coming Device Becomes Faster

- Over 1 GHz Design is really difficult
- Can not pass the Worst-Case Analysis
- Does Design based Typical-Case Analysis can use for Sign-Off?
- Multi Characteristics Drivers/Receivers to select according to PCB design
- Analog filter to make better signal quality
- Already implemented for DDR5, PCIe and more

KEI Systems

New Feature of Future IO Device

- Training
 - Execute Initial Stage
 - 1. Driver: Send Test Pattern Data
 - 2. Receiver: Send Back Received Data
 - 3. Driver: Set Difficult Driver/Receiver Characteristics
 - Back to Step 1
 - Already Implemented
 - DDR4/DDR5

KEI Systems

• PCI Express/USB 3~, High-Speed Serial

Training/Setting

What is Best Case Analysis?

- Training Feature selects Best combination of Driver/Receiver
 - Best sets of each PCB
 - Variation of Each IC's Characteristics
- PCB works in Best Case
- Simulation can not simulate Best Case
 - Mode has only Max/Typ/Min case
 - Can not simulate include the variation of each IC

How to Execute Best Case Analysis?

- If simulation result has no error, actual PCB should work well
- IBIS Model supports "Model Selector"
- IBIS-AMI
- In DDR4 Simulation, It should be executed manually
 - 1. Use Low (34 ohm) Driver/Middle ODT (60 ohm) Models and Typ case simulation
 - 2. If result is OK, it's OK.

If result is NG, change the model and re-simulate (It's necessary to judge which is better Faster/Slower)

KEI Systems

IBIS Model

- Easy (Accustomed) to use
 - Good tools (Viewer, Editor)
 - [Model selector] (Simulator's Issue)

Can not support Analog Filter

[Model Se]	Lecto	r]		Progbuffer1
I				
OUT_2	2 1	mΑ	buffer	without slew rate control
OUT_4	4 1	mΑ	buffer	without slew rate control
OUT_6	6 1	mΑ	buffer	without slew rate control
OUT_4S	4 1	mΑ	buffer	with slew rate control
OUT_6S	6 1	mA	buffer	with slew rate control
[Model Se]	lecto	r]		Progbuffer2
[Model Se] 	lecto	r]		Progbuffer2
[Model Se] OUT 2	lecto: 2 1	r] mA	buffer	Progbuffer2 without slew rate control
[Model Se] OUT_2 OUT 6	Lecto: 2 1 6 1	r] mA mA	buffer buffer	Progbuffer2 without slew rate control without slew rate control
[Model Se] OUT_2 OUT_6 OUT 6S	Lecto: 2 1 6 1 6 1	r] mA mA mA	buffer buffer buffer	Progbuffer2 without slew rate control without slew rate control with slew rate control
[Model Se] OUT_2 OUT_6 OUT_6S OUT_8S	Lecto: 2 1 6 1 6 1 8 1	r] mA mA mA mA	buffer buffer buffer buffer	Progbuffer2 without slew rate control without slew rate control with slew rate control with slew rate control
[Model Se] OUT_2 OUT_6 OUT_6S OUT_8S OUT_10S	lecto: 2 1 6 1 6 1 8 1 10 1	r] mA mA mA mA	buffer buffer buffer buffer buffer	Progbuffer2 without slew rate control without slew rate control with slew rate control with slew rate control with slew rate control
[Model Se] OUT_2 OUT_6 OUT_6S OUT_8S OUT_10S	2 1 2 1 6 1 6 1 8 1 10 1	r] mA mA mA mA mA	buffer buffer buffer buffer buffer	Progbuffer2 without slew rate control without slew rate control with slew rate control with slew rate control with slew rate control FI Systems

IBIS-AMI

- Good (Best) way
 - Maybe Implemented Best Case Analysis, already
 - Simulation for PCI Express

- Can not review/evaluate the Model
 - No Viewer, Editor

Conclusion

- IC's Training Feature is very useful to make easy PCB Design
- It's the good idea to expand implementation for not only DDR4/DDR5, PCIe but also other fast signals
- "Best Case Analysis" is enough for Training Devices
 - Actual PCB should have better result than Simulation
- Both IBIS Model and IBIS-AMI can support "Best Case Analysis" without any enhancement

Reference

- Maeda "Is Typ. Analysys Enough? What Is Corner Condition?" 2016 Asian IBIS Summit, Tokyo
- Masuko, Maeda "Embedded DDR4 Design Simulation" 2016 Asian IBIS Summit, Tokyo
- Maeda "DDR System Simulation: What Issue to Simulate" 2017 Asian IBIS Summit, Tokyo