Virtual Asian IBIS Summit (Tokyo)

DDR memory system simulation method

November 12, 2021

KEI Systems
Shinichi Maeda
OVERVIEW

• (LP)DDR Memory has 5 generations
• Every generation is x2 speed and lower Vdd from previous
• Higher speed makes it difficult to design PCB system
• New generation DDR implements new features to make PCB design easier
• New features require changes to simulation methods
(LP)DDR Speed/Vdd

- JEDEC

[Diagram showing the evolution of DDR memory technologies from DDR to LPDDR over time, with associated voltage and clock speed.]
(LP)DDR Features on Generation

JEDEC

<table>
<thead>
<tr>
<th>Item</th>
<th>DDR</th>
<th>LPDDR</th>
<th>DDR2</th>
<th>LPDDR2</th>
<th>DDR3</th>
<th>LPDDR3</th>
<th>DDR4</th>
<th>LPDDR4</th>
<th>DDR5</th>
<th>LPDDR5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer Speed(gBPS)</td>
<td>200〜400M</td>
<td>200〜400M</td>
<td>400〜800</td>
<td>400〜1066</td>
<td>800〜2066</td>
<td>800〜1600</td>
<td>1600〜3200</td>
<td>1600〜3200</td>
<td>3200〜6400</td>
<td>3200〜6400</td>
</tr>
<tr>
<td>Clock(Hz)</td>
<td>100〜200M</td>
<td>100〜200M</td>
<td>200〜400M</td>
<td>200〜533M</td>
<td>400〜1033</td>
<td>400〜800</td>
<td>800〜1600</td>
<td>800〜1600</td>
<td>1600〜3200</td>
<td>1600〜3200</td>
</tr>
<tr>
<td>Vdd/Vddq</td>
<td>2.5</td>
<td>1.8</td>
<td>1.8</td>
<td>1.2</td>
<td>1.5</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1/0.6</td>
<td>1.1</td>
<td>1.05/0.5</td>
</tr>
<tr>
<td>Output Impedance</td>
<td>Full/Half</td>
<td>Full/Half</td>
<td>Full/Reduc</td>
<td>34/48/60/8</td>
<td>30/40</td>
<td>34/48</td>
<td>34/40</td>
<td>34/40</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ODT Value</td>
<td>—</td>
<td>—</td>
<td>50/75/150/</td>
<td>—</td>
<td>20/30/40/6</td>
<td>34.3/40/6</td>
<td>34.4/40/6</td>
<td>640/48/60/8</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ODT Pull</td>
<td>—</td>
<td>—</td>
<td>Vdd/2</td>
<td>—</td>
<td>Vdd/2</td>
<td>Vdd</td>
<td>Vdd</td>
<td>Vdd</td>
<td>Vdd</td>
<td></td>
</tr>
<tr>
<td>Training</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Equalizer/Empahys</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Strage</td>
<td>16Mb〜256Mb</td>
<td>64Mb〜2Gb</td>
<td>128Mb〜4Gb</td>
<td>64Mb〜32Gb</td>
<td>512Mb〜8Gb</td>
<td>1Gb〜32Gb</td>
<td>2Gb〜16Gb</td>
<td>4Gb〜32Gb</td>
<td>8Gb〜64Gb</td>
<td>4Gb〜32Gb</td>
</tr>
</tbody>
</table>
DDR vs. LPDDR

- **DDR**
 - Application: HPC, PC, Built-in System
 - High-end Performance: Speed, Memory Size
 - Connect multiple memories
 - BGA
 - DIMM/SIMM Module

- **LPDDR**
 - Application: Mobile device
 - Low Power First, next size then speed, memory size
 - Connect one or a few memories
 - POP (Package-on-Package), Flip Chip, BGA
DDR Technologies

- DDR
 - Lower Power
 - Green Energy
 - Data Center, Super Computer
 - LPDDR
 - Higher Speed, More Memory Size
 - High Performance Mobile Device
 - Smart Phone, Mobile Game, 5G
- DDR4/LPDDR4
- DDR5/LPDDR5
Basic Simulation Flow

- Schematic Design
- PCB Design Concept
- Pre-Layout Simulation
- Layout Design
- Post-Layout Simulation
- Manufacturing

PCB Design

- PCB Stack-up
- Temporary Placement
- Temporary Etch Length
- Layer Structure
- Design Rule
- Design Verification
- Sign off
DDR~DDR3

- Features for PCB Design
 - Multi-Driver Strength
 - Multi-Value ODT (DDR2)
 - Fly-by (DDR3)

- Considerations
 - Typical/Worst
 - Derating
Tolerance of IC Characteristics

- Drive: Slow - Fast
- Receiver: Slow - Fast

- IO Model
 - Fast/Typical/Slow
 - Driver: Output Impedance Ramp
 - Receiver: Threshold Voltage

- C Comp, Package L/C/R

- Vcc Voltage
 - Vtyp +/- 5~10%

- IC Temperature
Typ vs. Corner

- **Fast**

- **Typ**

- **Slow**

- **DDR4 2400**
 - Driver: DQ
 - Receiver: DQ

Ramp

- $R_{load} = 50$

- dV/dt_r:
 - Typ: $4.1235E-01/6.4489E-11$
 - Min: $3.8046E-01/8.4106E-11$
 - Max: $4.4653E-01/5.2562E-11$

- dV/dt_f:
 - Typ: $4.5987E-01/6.2372E-11$
 - Min: $4.3947E-01/7.9203E-11$
 - Max: $4.6741E-01/4.9982E-11$

Falling Waveform

- $V_{fixture} = 1.2V$
- $V_{fixture_min} = 1.14V$
- $V_{fixture_max} = 1.26V$
- $R_{fixture} = 50\Omega$
- $C_{fixture} = 0F$

<table>
<thead>
<tr>
<th>Time</th>
<th>V(typ)</th>
<th>V(min)</th>
<th>V(max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00000000E+00</td>
<td>1.19999848E+00</td>
<td>1.13999700E+00</td>
<td>1.25999947E+00</td>
</tr>
<tr>
<td>5.00000000E-12</td>
<td>1.19999849E+00</td>
<td>1.13999700E+00</td>
<td>1.25999948E+00</td>
</tr>
<tr>
<td>1.00000000E-11</td>
<td>1.19999849E+00</td>
<td>1.13999700E+00</td>
<td>1.25999948E+00</td>
</tr>
</tbody>
</table>
Derating

- Timing Specification
 - Reference: Threshold Voltage
 - Timing differs based on Slew-Rate
 - Standard is the value of 1v/ns

Table 69 — Derating values DDR3-800/1066/1333/1600 tHs/tIH - ac/dc based

<table>
<thead>
<tr>
<th>CMD/ADD Slew Rate V/ns</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0 V/ns</td>
<td>62</td>
<td>60</td>
<td>60</td>
<td>62</td>
<td>64</td>
<td>64</td>
<td>67</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>3.0 V/ns</td>
<td>60</td>
<td>62</td>
<td>64</td>
<td>67</td>
<td>70</td>
<td>71</td>
<td>67</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>2.0 V/ns</td>
<td>62</td>
<td>64</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>73</td>
<td>67</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>1.8 V/ns</td>
<td>62</td>
<td>62</td>
<td>64</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>67</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>1.6 V/ns</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>62</td>
<td>64</td>
<td>64</td>
<td>67</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>1.4 V/ns</td>
<td>60</td>
<td>60</td>
<td>62</td>
<td>62</td>
<td>62</td>
<td>62</td>
<td>62</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>1.2 V/ns</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>1.0 V/ns</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>
DDR3 System Simulation

- IBIS Model
- Timing Simulation
 - Bus Simulation (Crosstalk)
 - 8 Bit Parallel Signals
 - PRBS
- Power Aware
- Eye Pattern
 - Derating
- Worst Case/Typical Case
 - Margin/Yield Rate
New Features

- DQ Vref Training/ZQ calibration
- Support Eye Mask
 - No more Derating

Diagram

- **Controller**
 - Ron: 34/40
 - Write
 - Read

- **ODT/Driver Vref**
 - Set

- **DDR**
 - Ron: 34/40
 - ODT: 34/40/48/60/120/240/OFF

- **MPR**

Flowchart

- Return Data
- Same Data
- Different Data

Convention of Values

- Same
- Different

Center of Convention
DDR4/LPDDR4 System Simulation

- IBIS Model
 - Timing Simulation
 - Bus Simulation (Crosstalk)
 - 8 Bit Parallel Signals
 - PRBS
 - Power Aware
 - Eye Mask
 - No More Derating
 - Best Case Analysis
 - Any One Case is Good, Real Should be Better
- IBIS–AMI (Idea)
 - Auto Model Selector
 - Crosstalk Analysis, SSN Analysis
• New Features
 • Analog Driver/Receiver
 • Emphasis
 • Equalizer
 • Feature of PCI Express/High Speed Serial
 • Separate Clock/DQ Write/DQ Read
 • CMD/Address is Slower than DQ
DDR5 Simulation

- IBIS–AMI
 - Emphasis, Equalization: IBIS Model Supports Driver/Receiver
 - Crosstalk Analysis?
 - SSN Effect?
Reference

 S.Maeda, 2016 Asian IBIS Summit Tokyo