AI on SI: Data Efficient Analysis and Manufacturing Process Variation Analysis

Peizhi Lei, Cong Wang, Jie Zheng, Jienan Chen (University of Electronic Science and Technology of China)

Yiran Lei, Su Li (Huawei Technologies Co., Ltd)

Asian IBIS Virtual Summit (China)
November 4, 2022
Contents

1. Background: AI in signal integrity
2. Challenges
3. Application 1: Manufacturing process variation analysis
4. Application 2: Data efficient signal integrity analysis
5. Conclusion
Background: AI in Signal Integrity

Deep NN (DNN)
- Target Impedance Violation
- Eye Diagram Modeling
- Current Prediction

Transposed CNN (TCNN)
- Capture the resonant inductor behavior
- Predicting the S/Z-parameters

Recurrent Neural Network (RNN)
- Behavioral models of input-output drivers
- Capture the memory effect

Reinforcement Learning
- Chip floorplan
- Wire Interconnect for PCB
- Microwave Device Design
Challenges

Manufacturing Process Deviation
• Current estimated margin makes it difficult to design higher-rate systems
• The manufacturing processing variation is hard to quantify
• The variation of system performance might be considered by the impact of multi-factor coupling
• A large amount of simulations and test data are required
• Challenge: How can we use limited data to estimate system performance under the influence of multiple processing variables?

System Optimization
• Simulation for each system setup takes long time
• Multiple correlated parameters => large search space
• Traditional traversing methods not possible
• Machine learning based methods require a lot of training data
• Challenge: How can we reduce the required training data?
Manufacturing Process Deviation Analysis

Manufacturing coupling variables for channels

Model used: Channel Operating Margin (COM)
* IBIS model can be used for similar application as well

Steps
• Select variables for training
• Construct end-to-end links automatically
• Calculate COM values for training S parameters
• Predict massive COM values

DNN training

Input: processing variables
Output: COM values for certain link

<table>
<thead>
<tr>
<th>Min Error</th>
<th>Max Error</th>
<th>Average Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00005 dB</td>
<td>0.227 dB</td>
<td>0.0008 dB</td>
</tr>
</tbody>
</table>
Manufacturing Process Deviation Results

DNN Prediction

- **Millions** of COM values for channels can be predicted from limited training samples in seconds
- Bounds of COM values @ N sigma can be given according to PDF and CDF
- Performance of certain channel can be derived by comparing typical COM with the worst N sigma COM

- typ COM=4.68dB, best COM=5.5dB
- worst COM=2.67dB, 3sigma COM=3.87dB

\[
\text{COM@99.73\%: 3.87dB} \\
\text{delta_COM@3-5sig: 0.8; 1.32; 1.46dB}
\]
Data Efficient Signal Integrity Analysis

Input: circuit parameters
\[x = (x_1, x_2, ..., x_n) \]

Output: eye height and width
\[y = (y_{EH}, y_{EW}) \]

- Duo-DNN: Modeling the input-output
- DDQN: Searching for the informative input parameters
- IBIS-based Simulator: Labeling the generated input parameters

Or we can use GAN-based data augmentation module instead
- Retraining Duo-DNN with all inputs
Experiment Results DDQN Data

<table>
<thead>
<tr>
<th>data type</th>
<th>amount</th>
<th>total amount</th>
<th>EH ACC</th>
<th>EW ACC</th>
</tr>
</thead>
<tbody>
<tr>
<td>original datasets</td>
<td>600</td>
<td>600</td>
<td>92.40%</td>
<td>96.50%</td>
</tr>
<tr>
<td>add random samples</td>
<td>400</td>
<td>1000</td>
<td>94.18%</td>
<td>97.24%</td>
</tr>
<tr>
<td>add DDQN samples</td>
<td>400</td>
<td>1000</td>
<td>94.70%</td>
<td>97.66%</td>
</tr>
<tr>
<td>continue add random samples</td>
<td>400</td>
<td>1400</td>
<td>94.94%</td>
<td>97.80%</td>
</tr>
<tr>
<td>continue add DDQN samples</td>
<td>400</td>
<td>1400</td>
<td>95.29%</td>
<td>98.05%</td>
</tr>
</tbody>
</table>

Compared to randomly adding training samples, expanding training datasets with samples generated by DDQN is more efficient in training SI analysis model.
Experiment Results Synthetic Data

<table>
<thead>
<tr>
<th>data type and amount</th>
<th>prediction accuracy</th>
<th>improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>original 50</td>
<td>75.85%</td>
<td>-</td>
</tr>
<tr>
<td>add 50 random data</td>
<td>81.94%</td>
<td>6.09%</td>
</tr>
<tr>
<td>add 50 synthetic data</td>
<td>85.89%</td>
<td>10.04%</td>
</tr>
<tr>
<td>add 100 random data</td>
<td>85.59%</td>
<td>9.74%</td>
</tr>
<tr>
<td>add 100 synthetic data</td>
<td>88.65%</td>
<td>12.80%</td>
</tr>
<tr>
<td>add 200 random data</td>
<td>87.23%</td>
<td>11.38%</td>
</tr>
<tr>
<td>add 200 synthetic data</td>
<td>91.40%</td>
<td>15.55%</td>
</tr>
</tbody>
</table>

Compared to original small datasets, synthetic samples can improve **15.55%** of the prediction accuracy of SI analysis network.
Conclusion and Next Steps

Contributions:

• Uncertainty analysis based on information theory
• Improve the prediction accuracy of SI analysis
• Realize SI analysis based on a small amount of training datasets
• Derive Insertion Loss deviation resulting from manufacturing process variation

Next steps:

• Apply proposed methods on broader range of electronic circuit design tasks
Reference

Peizhi Lei, Chong Wang, Jie Zheng, Jienan Chen “Generative Query Reinforcement Active Learning Networks: A Sample-Free Method”, Reviewed by IEEE Transactions on Neural Networks and Learning Systems, 2022
Thank you.

Bring digital to every person, home and organization for a fully connected, intelligent world.

Copyright©2018 Huawei Technologies Co., Ltd. All Rights Reserved.

The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice.