Matrix Parameters in

 TouchstoneBob Ross, Teraspeed Labs, USA bob@teraspeedlabs.com

Asian IBIS Summit (Shanghai) Shanghai, PRC November 10, 2023

Agenda

- Goals
- Touchstone V1.0, V1.1, V2.0, V2.1 differences
- Reference Impedances (resistances)
- n-Port matrices (S, Y, Z)
- Conversions and mathematics
- 2-port matrices (H, G)
- Conversions
- Conclusion

Goals

- Show features for an upcoming Touchstone Version 2.1 document
- Show conversion mathematics for different per-port reference impedances (resistances) for TSCHK2.1 parser development
- Note, reference impedance will be designated as reference resistance since complex references are not supported

Touchstone Version 2.1 Document

- Touchstone V1.0 and V1.1 formats in the Version 2.1 Document
- No keywords, content based on strict formatting rules
- V1.0 supports a single port reference resistance in the option line beginning with \# ... $\mathrm{R}<r$ value> ...
- V1.1 supports per-port reference resistances at the end of the option line with \# ... $\left.\left.R<r_{1}\right\rangle\left\langle r_{2}\right\rangle \ldots<r_{n}\right\rangle$ syntax
- S-parameter matrices are defined based on the option line resistance entries
- All other matrices are NORMALIZED regardless of option line entries. For example, if $R=50.0 \Omega$, then $\mathrm{z}_{1,1}=1.0$ in V 1.0 when the measured value is $\mathrm{z}_{1,1}=50.0 \Omega$
- Per-port reference resistances are already supported by several EDA tools (but they may have different formats)

Touchstone Version 2.1 Document

- Touchstone V2.0 and V2.1 rules in the Version 2.1 Document
- Keyword based and [Version] 2.0 or [Version] 2.1 is required
- V2.0 and V2.1 have identical matrix data
- S-parameter matrices remain unchanged from V1.0 or V1.1 and are based on the reference resistance entries
- Y-, Z-, H-, G-parameter matrices are UN-NORMALIZED (sensitive to reference resistor values) - as if measured directly in ohms or siemens (mhos)
- [Reference] keyword lists the reference resistors
- Values can wrap (unlike in V1.1 where all values are on a single options line)

TSCHK2.0 Conversion Syntax Between V1.0 and V2.0

tschk2 -canonical

tschk2 -canonical <options> FILE Shortcut for -canonical-v2.

tschk2 -canonical -v2

tschk2 -canonical-v2 <options> FILE Checks the file, sending error and warning information to stderr, and writes a valid file to stdout in Touchstone v2 format.

tschk2-canonical -v1

tschk2 -canonical-v1 <options> FILE Checks the file, sending error and warning information to stderr, and writes a valid file to stdout in Touchstone v1 format, if possible.

A tschk2.1 parser should support the V1.1 and V2.1 conversions

Notation

- Z (normalized), ZU (un-normalized)
- Y (normalized), Y^{U} (un-normalized)
- H (normalized), H^{U} (un-normalized), 2-port only
- G (normalized), GU (un-normalized), 2-port only
- $\left.R<r_{1}\right\rangle\left\langle r_{2}\right\rangle$.. $\left.<r_{n}\right\rangle$ per-port reference resistors
- $R<r>$ for a single reference resistance

General N-Port Z Matrix

Conversion

- José Schutt-Ainé, ECE 546, Lecture 13, Scattering Parameters, Slides 28-29, Spring 2022, http://emlab.illinois.edu/ece546/Lect_13.pdf
- Formulas are restated using the notation in this presentation
- $\mathbf{k}=$ diagonal $\left[\sqrt{r_{1}}, \sqrt{r_{2}}, \ldots, \sqrt{r_{n}}\right]$ are based on power wave per-port normalization between incident and reflected waves ($b=S a$)
- Z = (I + S)(I - S) (normalized to r = 1; I = unit matrix)
- $Z^{U}=k(I+S)(I-S)^{-1} k=k Z k$
- Multiplication by the diagonal matrix k produces the terms $z^{u}{ }_{i, j}=z_{i, j} \sqrt{r_{i} r_{j}}$

Illustrating $\mathrm{z}^{\mathrm{u}}{ }_{\mathrm{i}, \mathrm{j}}$ Term Calculation

$$
\begin{aligned}
& z^{u}{ }_{i, j}=\left[\begin{array}{ccc}
k_{1} & 0 & 0 \\
0 & k_{i} & 0 \\
0 & 0 & k_{n}
\end{array}\right]\left[\begin{array}{lll}
z_{1,1} & z_{1} & z_{1, n} \\
z_{i, 1} & z_{i, j} & z_{i, n} \\
z_{n, 1} & z_{n, j} & z_{n, n}
\end{array}\right]\left[\begin{array}{ccc}
k_{1} & 0 & 0 \\
0 & k_{j} & 0 \\
0 & 0 & k_{n}
\end{array}\right]= \\
& {\left[\begin{array}{ccc}
k_{1} & 0 & 0 \\
0 & k_{i} & 0 \\
0 & 0 & k_{n}
\end{array}\right] \times\left[\begin{array}{c:c:c}
z_{1,1} k_{1} & z_{1} k_{j} & z_{1, n} k_{n} \\
z_{i, 1} k_{1} & z_{i, j} k_{j} & z_{i, n} k_{n} \\
z_{n, 1} k_{1} & z_{n, j} k_{j} & z_{n, n} k_{n}
\end{array}\right]=} \\
& {\left[\begin{array}{ccc}
k_{1} z_{1,1} k_{1} & k_{1} z_{1, j} k_{j} & k_{1} z_{1} k_{n} k_{n} \\
-k_{i} z_{i, 1} k_{1} & k_{i} z_{i, j} k_{j} & k_{i} z_{i, n} k_{n} \\
\hdashline k_{n} z_{n, 1} k_{1} & k_{n} z_{n, j} k_{j} & k_{n} z_{n, n} k_{n}^{\prime}
\end{array}\right]=z_{i, j} \sqrt{r_{i} r_{j}}}
\end{aligned}
$$

N-Port Matrix Conversions

$$
\frac{\mathbf{z}^{U} \leftarrow \mathbf{Z}}{z^{u}{ }_{i, j}=\sqrt{r_{i} r_{j}} z_{i, j}}
$$

$$
\underline{Y}^{U} \leftarrow Y
$$

$$
Y \leftarrow Y^{U}
$$

$$
y^{u}{ }_{i, j}=y_{i, j} / \sqrt{r_{i} r_{j}}
$$

$$
y_{i, j}=\sqrt{r_{i} r_{j}} y_{i, j}^{u}
$$

In V1.0 and V2.0, R <r> is used if $r_{i}=r_{j}$
V 2.0 cannot be converted to V 1.0 if $\boldsymbol{r}_{\boldsymbol{i}} \neq \boldsymbol{r}_{j}$

2-Port H-Parameter Conversions

$H^{U}<H$
$\left[\begin{array}{ll}\boldsymbol{h}_{1,1}^{u} & \boldsymbol{h}_{1,2}^{u} \\ \boldsymbol{h}_{2,1}^{u} & \boldsymbol{h}_{2,2}^{u}\end{array}\right]=\left[\begin{array}{cc}\boldsymbol{h}_{1,1} r_{1} & \boldsymbol{h}_{1,2} \\ \boldsymbol{h}_{2,1} & \boldsymbol{h}_{2,2} / r_{2}\end{array}\right]$
$\underline{H} \leftarrow \mathrm{H}^{U}$
$\left[\begin{array}{ll}\boldsymbol{h}_{1,1} & \boldsymbol{h}_{1,2} \\ \boldsymbol{h}_{2,1} & \boldsymbol{h}_{2,2}\end{array}\right]=\left[\begin{array}{cc}\boldsymbol{h}^{u}{ }_{1,1} / \boldsymbol{r}_{\boldsymbol{1}} & \boldsymbol{h}^{u}{ }_{1,2} \\ \boldsymbol{h}^{u}{ }_{2,1} & \boldsymbol{h}^{{ }_{2,2}} \boldsymbol{r}_{2}\end{array}\right]$

2-Port G-Parameter Conversions

$\mathbf{G}^{\mathbf{U}} \leqslant \mathbf{G}$
$\left[\begin{array}{ll}g^{u}{ }_{1,1} & g_{1,2}^{u} \\ g^{u}{ }_{2,1} & g^{u}{ }_{2,2}\end{array}\right]=\left[\begin{array}{cc}g_{1,1} / r_{1} & g_{1,2} \\ g_{2,1} & g_{2,2} r_{2}\end{array}\right]$
$G \leftarrow G^{U}$
$\left[\begin{array}{ll}g_{1,1} & g_{1,2} \\ g_{2,1} & g_{2,2}\end{array}\right]=\left[\begin{array}{cc}g_{1,1}^{u} r_{1} & g_{1,2}^{u} \\ g_{2,1}^{u} & g_{2,2}^{u} / r_{2}\end{array}\right]$

Conclusion

- Differences in Touchstone V1.0, V1.1, V2.0, V2.1 are shown
- New V1.1 option line syntax is shown
- Transformations between normalized and un-normalized matrix data are given for different per-port reference resistances
- TSCHK2.1 parser developer should add the per-port reference matrix transformation capability

