

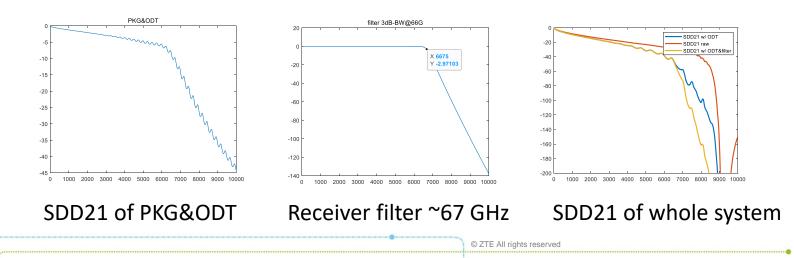
Exploring The Requirements for 224 Gbps Channel

Zheng Ming, Yin Changgang, Wei Zhongmin

zheng.ming1@zte.com.cn yin.changgang@zte.com.cn wei.zhongmin@zte.com.cn

Asian IBIS Summit (China), November 10, 2023

> Overview

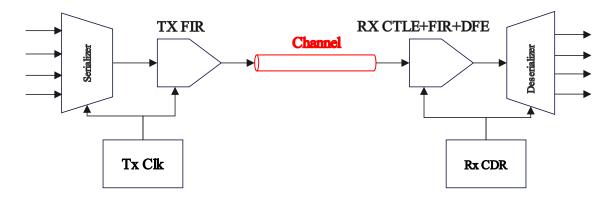

- System Modeling
- Simulation Results
- Summary&Conclusion

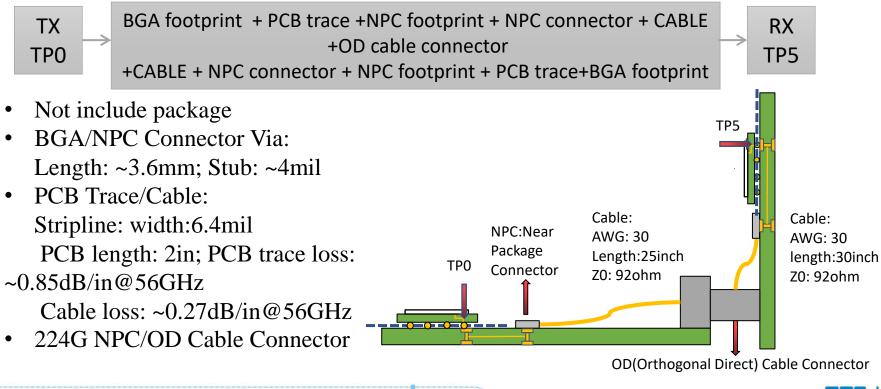
Increasing Bandwidth is Challenging

- Bandwidth of system components increases with data rate, keeping increasing bandwidth is very challenging in next generation high-speed serial interconnection.
- Current research on the 224 Gbps high-speed serial links has revealed that PAM4 modulation is still a good option due to its backward compatibility and better SNR performance.
- 2x bandwidth from 112 Gbps: Bandwidth requirement is over 80GHz in accordance with the evaluation of 112 Gbps links when modulation scheme is PAM4.
- Whether the bandwidth needs to exceed 80GHz?
 - We may pay a huge price to meet this strict requirements.
 - Is it really necessary from the perspective of system performance?

Whole Analog Channel Matters

- The bandwidth of the system not only refers to the bandwidth of the system components, but also includes the bandwidth of analog front end at transceiver.
- When we design 224G system, it's not just about silicon performance, but also components, such as package, PCB, connector and cable, all of them have to improve dramatically.
- We define channel "bandwidth" as : At the specific frequency, signal amplitude is rapidly decreased at a roll-off rate higher than the normal loss (conductor loss or dielectric loss).





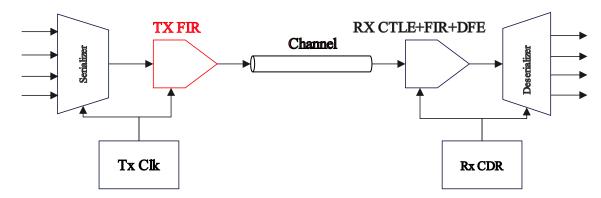
> Overview

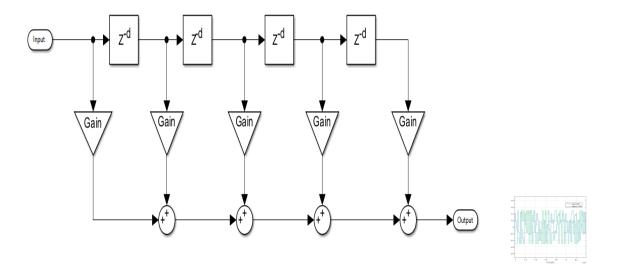
- System Modeling
- Simulation Results
- Summary&Conclusion

Channel description



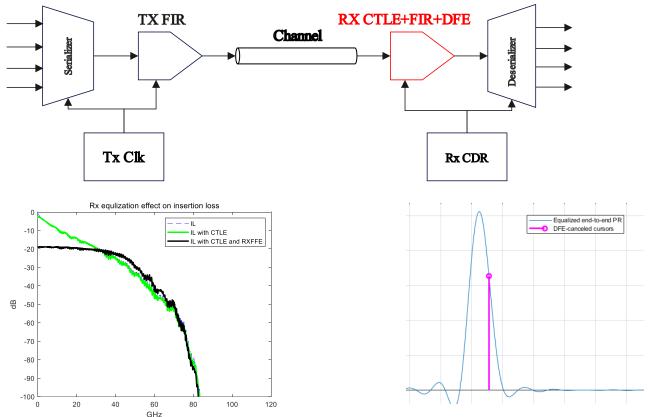
© ZTE All rights reserved




Channel Characteristics Analysis

ZTE中兴

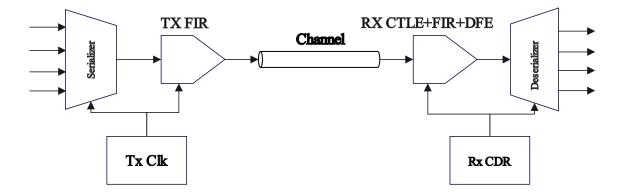
Tx Equalizer


• Tx FIR has 3 pre, 1 post.

Tx FIR effects in time domain

Rx Equalizer

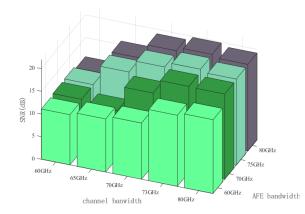
CTLE and RX FIR effect in frequency domain DFE effect in time domain


- CTLE is modeled by Poles and Zeros, Receiver bandwidth ranges from 60 GHz to 80 GHz, marked as 60, 70, 75, 80 GHz.
- Rx FIR has 5-pre and 24-post.
- DFE has 1 tap.

> Overview

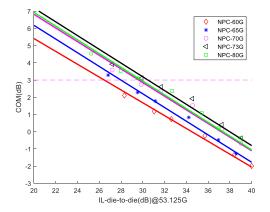
- System Modeling
- Simulation Results
- Summary&Conclusion

Simulation Results



- Based on the previous slides, now we have:
 - Different channel models: they have basically the same loss, but different roll-off frequency, marked as 60, 65, 70, 73, 80 GHz.
 - AFE models: they have different roll-off frequency, marked as 60, 70, 75, 80 GHz.
- There are 20 combinations of different AFE models and channel models, we can get SNR through simulation.

Simulation Results


SNR (dB)	AFE Bandwidth							
		60GHz	70GHz	75GHz	80GHz			
ChannelBand width	60GHz	11.08	11.37	11.49	10.8			
	65GHz	11.72	10.42	15.85	15.83			
	70GHz	12.39	15.89	18.54	19.01			
	73GHz	15.68	18.94	19.61	19.78			
	80GHz	16.28	18.83	19.02	19.14			

- Both AFE Bandwidth and channel bandwidth seriously affect channel performance.
- When the bandwidth continues to increase, the improvement of SNR is not obvious.

Simulation Results

- Based on COM 4.0.
- COM configuration in appendix
- The fit curves of 70 GHz,73 GHz and 80 GHz are nearly overlap.

Channel name	IL(dB)	IL_die_to_die(dB) (case1/case)	ERL /dB	FOM_ILD /dB	сом	
60G_15IN_30IN	18.97	28.31/35.69	19.53	3.00	2.08/0.25	
65G_15IN_30IN	18.66	26.81/34.23	22.03	1.43	3.45/1.22	
70G_15IN_30IN	18.23	27.18/34.57	21.08	0.72	3.73/1.89	
73G_15IN_30IN	18.16	27.19/34.55	20.40	0.10	4.02/2.21	
80G_15IN_30IN	17.99	25.26/32.69	22.06	0.04	4.65/2.82	
60G_15IN_35IN	21.68	31.04/38.43	19.53	3.02	1.53/-1.06	
65G_15IN_35IN	21.38	29.53/36.95	22.05	1.44	2.69/0.043	
70G_15IN_35IN	20.94	29.87/37.26	21.08	0.72	3.12/0.54	
73G_15IN_35IN	20.87	29.89/37.26	20.42	0.10	3.40/0.88	
80G_15IN_35IN	20.72	27.97/35.42	22.07	0.04	3.76/1.52	
60G_20IN_30IN	20.57	29.91/37.29	19.45	3.01	1.90/-0.57	
65G_20IN_30IN	20.26	28.41/35.83	21.92	1.43	3.12/0.63	
70G_20IN_30IN	19.86	28.87/36.26	21.06	0.72	3.45/1.17	
73G_20IN_30IN	19.79	28.95/36.30	20.35	0.10	3.65/1.54	
80G_20IN_30IN	19.60	26.74/34.20	22.00	0.04	4.15/2.11	
60G_20IN_35IN	23.29	32.61/40.00	19.45	3.01	0.84/-1.58	
65G_20IN_35IN	23.01	31.15/38.56	21.95	1.44	2.06/-0.84	
70G_20IN_35IN	22.57	31.61/39.01	21.07	0.72	2.54/-0.16	
73G_20IN_35IN	22.53	31.68/39.04	20.34	0.10	2.85/0.17	
80G_20IN_35IN	22.38	29.50/36.94	21.98	0.04	3.34/0.77	

> Overview

System Modeling

Simulation Results

Summary&Conclusion

Summary&Conclusion

- Both passive channels and analog front end of transceivers have a strong impact on system performance.
- We conduct passive channels with different bandwidth based on simulation models of all components in the system under next-generation technical conditions. We also build various models of analog front end in time-domain simulation.
- We use the time-domain simulation tool and COM to investigate the impact of bandwidth on performance.
- The bandwidth of the transceiver and channel should be higher than the Nyquist frequency for PAM4. However, it does not need to be 1.5 times Nyquist frequency. Based on simulation results, a bandwidth higher than 70 GHz would be a good option.

Appendix

	Table 93A-1 parameters				I/O control			Table 93A–3 parameters	
Parameter	Setting	Units	Information	DIAGNOSTICS	1	logical	Parameter	Setting	Units
f_b	106.25	GBd		DISPLAY_WINDOW	1	logical	package_tl_gamma0_a1_a2	[0 0.0008455 0.000340225]	
f_min	0.05	GHz		MLSE	1	logical	package_tl_tau	0.00644805	ns/mm
Delta_f	0.01	GHz		CSV_REPORT	1	logical	package_Z_c	[92 92 ; 70 70; 80 80; 100 100]	Ohm
C_d	[0.4e-4 0.9e-4 1.1e-4 ;0.4e-4 0.9e-4 1.1e-4]	nF	[TX RX]	RESULT_DIR	.\results\CAKR_{date}\				
L_s	[0.13 0.15 0.14; 0.13 0.15 0.14]	nH	[TX RX]	SAVE_FIGURES	0	logical	Parameter	Setting	
C_b	[0.3e-4 0.3e-4]	nF	[TX RX]	Port Order	[1324]		board_tl_gamma0_a1_a2	[0 6.44084e-4 3.6036e-05]	1.5 db/in @ 56G
z_p select	[12]		[test cases to run]	RUNTAG	CAKR_RCos_eval_		board_tl_tau	5.790E-03	ns/mm
z_p (TX)	[12 31 45; 1 1 1 ; 0.1 0.1 0.1; 0.58 0.58 0.58]	mm	[test cases]	COM_CONTRIBUTION	0	logical	board_Z_c	100	Ohm
z_p (NEXT)	[12 29 45; 1 1 1 ; 0.1 0.1 0.1 ; 0.58 0.58 0.58]	mm	[test cases]	Ope	ra <mark>tional</mark>		z_bp (TX)	125	mm
z_p (FEXT)	[12 31 45; 1 1 1 ; 0.1 0.1 0.1; 0.58 0.58 0.58]	mm	[test cases]	ERL Pass threshold	10	dB	z_bp (NEXT)	0	mm
z_p (RX)	[12 29 45; 1 1 1 ; 0.1 0.1 0.1; 0.58 0.58 0.58]	mm	[test cases]	COM Pass threshold	3	db	z_bp (FEXT)	125	mm
PKG_Tx_FFE_preset	0			DER_0	1.00E-04		z_bp (RX)	0	mm
C_p	[0.5e-4 0.5e-4]	nF	[TX RX]	T_r	4.71E-03	ns	C_0	[0.2e-4 0]	nF
R_0	50	Ohm		FORCE_TR	1	logical	C_1	[0.2e-4 0]	nF
R_d	[45 45]	Ohm	[TX RX]	PMD_type	C2C		Include PCB	0	logical
A_v	0.4	V	vp/vf=	EW	1				
A_fe	0.4	V	vp/vf=	TDR and	ERL options	logical			
A_ne	0.6	٧		TDR	1	logical	Seletions	rectangle, gaussian,dual_rayleigh,triangl	e
L	4			ERL	1	logical	Histogram_Window_Weight	gaussian	selection
М	32			ERL_ONLY	0	ns	Qr	0.02	UI
	filter and Eq			TR_TDR	0.01				
f_r	0.75	*fb		N	1000	logical			
c(0)	0.5		min	TDR_Butterworth	1			ICN parameters	
c(-1)	[-0.4:0.02:0]		[min:step:max]	beta_x	0		f_v	0.278	Fb
c(-2)	[0:0.02:0.2]		[min:step:max]	rho_x	0.618		f_f	0.278	Fb
c(-3)	[-0.1:0.02:0]		[min:step:max]	TDR_W_TXPKG	0	UI	f_n	0.278	Fb
c(1)	[-0.2:0.02:0]		[min:step:max]	N_bx	24		f_2	79.688	GHz
N_b	24	UI		fixture delay time	[00]		A_ft	0.450	V
b_max(1)	0.85		As/dffe1	Tukey_Window	1		A_nt	0.450	V
b_max(2N_b)	[0.5 0.3+ones(1,5) 0.2+ones(1,17)]		As/dfe2N_b	Noi	Noise, jitter UI				
b_min(1)	0.3		As/dffe1	sigma_RJ 0.01 UI		UI	Floating Tap Control		
b_min(2N_b)	-0.3		As/dfe2N_b	A_DD	0.02	V^2/GHz	N_bg	6	012 or 3 groups
g DC	[-20:1:0]	dB	[min:step:max]	eta 0	4.10E-09	dB	N bf	3	taps per group
f_z	42.5	GHz		SNR_TX	33		N_f	120	UI span for floating taps
f_p1	42.5	GHz		R_LM	0.95		bmaxg	0.2	max DFE value for floating ta
f_p2	106.25	GHz		11-2022 BenArtsi pkg	oif2022.065.02		B_float_RSS_MAX	0.1	rss tail tap limit
g DC HP	[-6:1:0]		[min:step:max]	highlighted are under re-cons	ideration		N tail start	25	(UI) start of tail taps limit
f HP PZ	0.6640625	GHz							
Butterworth	1	logical	include in fr					Receiver testing	
Raised Cosine	0	logical	include in fr				RX CALIBRATION	0	logical
RC Start	6.70E+10	Hz	start freg for RCos				Sigma BBN step	5.00E-03	V
RC end	7.97E+10	Hz	end freg for RCos						

Thank you !

