

Matrix Parameters in Touchstone

Bob Ross, Teraspeed Labs, USA bob@teraspeedlabs.com

Hybrid Asian IBIS Summit (Tokyo)
Tokyo, Japan
November 14, 2023

Agenda

- Goals
- Touchstone V1.0, V1.1, V2.0, V2.1 differences
- Reference Impedances (resistances)
- n-Port matrices (S, Y, Z)
 - Conversions and mathematics
- 2-port matrices (H, G)
 - Conversions
- Conclusion

Goals

- Show features for an upcoming Touchstone Version
 2.1 document
- Show conversion mathematics for different per-port reference impedances (resistances) for TSCHK2.1 parser development
- Note, reference impedance will be designated as reference resistance since complex references are not supported

Touchstone Version 2.1 Document

- Touchstone V1.0 and V1.1 formats in the Version 2.1 Document
 - No keywords, content based on strict formatting rules
 - V1.0 supports a single port reference resistance in the option line beginning with # ... R <r value> ...
 - \circ V1.1 supports per-port reference resistances at the end of the option line with # ... R <r₁> <r₂>... <r_n> syntax
 - S-parameter matrices are defined based on the option line resistance entries
 - \circ All other matrices are NORMALIZED regardless of option line entries. For example, if R = 50.0 Ω , then $z_{1,1}$ = 1.0 in V1.0 when the measured value is $z_{1,1}$ = 50.0 Ω
 - Per-port reference resistances are already supported by several EDA tools (but they may have different formats)

Touchstone Version 2.1 Document

- Touchstone V2.0 and V2.1 rules in the Version 2.1 Document
 - Keyword based and [Version] 2.0 or [Version] 2.1 is required
 - V2.0 and V2.1 have identical matrix data
 - S-parameter matrices remain unchanged from V1.0 or V1.1 and are based on the reference resistance entries
 - Y-, Z-, H-, G-parameter matrices are UN-NORMALIZED (sensitive to reference resistor values) – as if measured directly in ohms or siemens (mhos)
 - [Reference] keyword lists the reference resistors
 - Values can wrap (unlike in V1.1 where all values are on a single options line)

TSCHK2.0 Conversion Syntax Between V1.0 and V2.0

tschk2 -canonical

tschk2 -canonical <options> FILE Shortcut for -canonical-v2.

tschk2 -canonical -v2

tschk2 -canonical-v2 <options> FILE Checks the file, sending error and warning
information to stderr, and writes a valid file
to stdout in Touchstone v2 format.

tschk2 -canonical -v1

tschk2 -canonical-v1 <options> FILE Checks the file, sending error and warning information to stderr, and writes a valid file to stdout in Touchstone v1 format, if possible.

A tschk2.1 parser should support the V1.1 and V2.1 conversions

Notation

- Z (normalized), Z^U (un-normalized)
- Y (normalized), Y^U (un-normalized)
- H (normalized), H^U (un-normalized), 2-port only
- G (normalized), G^U (un-normalized), 2-port only
- $R < r_1 > < r_2 > ... < r_n > per-port reference resistors$
- R <r> for a single reference resistance

General N-Port Z Matrix

Conversion

- José Schutt-Ainé, ECE 546, Lecture 13, Scattering Parameters, Slides 28-29, Spring 2022, http://emlab.illinois.edu/ece546/Lect_13.pdf
- Formulas are restated using the notation in this presentation
- k = diagonal $[\sqrt{r_1}, \sqrt{r_2}, ..., \sqrt{r_n}]$ are based on power wave per-port normalization between incident and reflected waves (b = Sa)
- $Z = (I + S)(I S)^{-1}$ (normalized to r = 1; I = unit matrix)
- $Z^{U} = k (I + S)(I S)^{-1} k = k Z k$
- Multiplication by the diagonal matrix k produces the terms $z^u_{i,j}$ = $z_{i,j} \sqrt{r_i r_j}$

Illustrating z^u_{i,j} Term Calculation

$$z^{u}_{i,j} = \begin{bmatrix} k_{1} & 0 & 0 \\ 0 & k_{i} & 0 \\ 0 & 0 & k_{n} \end{bmatrix} \begin{bmatrix} z_{1,1} & z_{1,j} & z_{1,n} \\ z_{i,1} & z_{i,j} & z_{i,n} \\ z_{n,j} & z_{n,n} \end{bmatrix} \begin{bmatrix} k_{1} & 0 & 0 \\ 0 & k_{j} & 0 \\ 0 & 0 & k_{n} \end{bmatrix} = \begin{bmatrix} k_{1} & 0 & 0 \\ 0 & k_{i} & 0 \\ 0 & 0 & k_{n} \end{bmatrix} \times \begin{bmatrix} z_{1,1}k_{1} & z_{1,j}k_{j} & z_{1,n}k_{n} \\ z_{i,1}k_{1} & z_{i,j}k_{j} & z_{i,n}k_{n} \\ z_{n,1}k_{1} & z_{n,j}k_{j} & z_{n,n}k_{n} \end{bmatrix} = \begin{bmatrix} k_{1}z_{1,1}k_{1} & k_{1}z_{1,j}k_{j} & k_{1}z_{1,n}k_{n} \\ k_{i}z_{i,1}k_{1} & k_{i}z_{i,j}k_{j} & k_{1}z_{1,n}k_{n} \\ k_{i}z_{i,1}k_{1} & k_{i}z_{i,j}k_{j} & k_{i}z_{i,n}k_{n} \end{bmatrix} = z_{i,j}\sqrt{r_{i}r_{j}}$$

$$\begin{bmatrix} k_{n}z_{n,1}k_{1} & k_{n}z_{n,j}k_{j} & k_{n}z_{n,n}k_{n} \\ k_{n}z_{n,1}k_{1} & k_{n}z_{n,j}k_{j} & k_{n}z_{n,n}k_{n} \end{bmatrix} = z_{i,j}\sqrt{r_{i}r_{j}}$$

N-Port Matrix Conversions

$$\frac{\mathbf{Z}^{\mathsf{U}} \leftarrow \mathbf{Z}}{\mathbf{z}^{u}_{i,j}} = \sqrt{r_{i}r_{j}} \ z_{i,j}$$

$$\frac{\mathbf{Y}^{\mathsf{U}} \leftarrow \mathbf{Y}}{\mathbf{y}^{\mathsf{u}}_{i,i}} = y_{i,j} / \sqrt{r_i r_j}$$

$$\frac{\mathbf{Z} \leftarrow \mathbf{Z}^{\mathsf{U}}}{z_{i,j}} = z^{u}_{i,j} / \sqrt{r_{i}r_{j}}$$

$$\underline{\mathbf{Y}} \leftarrow \underline{\mathbf{Y}}^{\mathbf{U}}$$

$$y_{i,j} = \sqrt{r_i r_j} y^u_{i,j}$$

In V1.0 and V2.0, R <r> is used if $r_i=r_j$ V2.0 cannot be converted to V1.0 if $r_i\neq r_j$

2-Port H-Parameter Conversions

H^U ← H

$$\begin{bmatrix} h^{u}_{1,1} & h^{u}_{1,2} \\ h^{u}_{2,1} & h^{u}_{2,2} \end{bmatrix} = \begin{bmatrix} h_{1,1} r_{1} & h_{1,2} \\ h_{2,1} & h_{2,2} / r_{2} \end{bmatrix}$$

H ← H^U

$$\begin{bmatrix} h_{1,1} & h_{1,2} \\ h_{2,1} & h_{2,2} \end{bmatrix} = \begin{bmatrix} h^u_{1,1}/r_1 & h^u_{1,2} \\ h^u_{2,1} & h^u_{2,2} r_2 \end{bmatrix}$$

2-Port G-Parameter Conversions

$G^{U} \leftarrow G$

$$\begin{bmatrix} g^{u}_{1,1} & g^{u}_{1,2} \\ g^{u}_{2,1} & g^{u}_{2,2} \end{bmatrix} = \begin{bmatrix} g_{1,1}/r_{1} & g_{1,2} \\ g_{2,1} & g_{2,2} r_{2} \end{bmatrix}$$

$G \leftarrow G^{U}$

$$\begin{bmatrix} g_{1,1} & g_{1,2} \\ g_{2,1} & g_{2,2} \end{bmatrix} = \begin{bmatrix} g^u_{1,1} r_1 & g^u_{1,2} \\ g^u_{2,1} & g^u_{2,2} / r_2 \end{bmatrix}$$

Conclusion

- Differences in Touchstone V1.0, V1.1, V2.0, V2.1 are shown
- New V1.1 option line syntax is shown
- Transformations between normalized and un-normalized matrix data are given for different per-port reference resistances
- TSCHK2.1 parser developer should add the per-port reference matrix transformation capability

