IBIS4.2 and VHDL-AMS for SERDES and DDR2 Analysis

Ian Dodd
Architect, High Speed Tools
ian_dodd@mentor.com

Gary Pratt
Manager, High Speed Partnerships
gary_pratt@mentor.com

27th October 2006
IBIS 4.2 Multi-lingual Extensions

- Traditional IBIS lacks the ability to adequately model the behavior of devices used in state of the art communication channels:
 - Drivers with pre-compensation
 - Receivers with input slew rate sensitivity.
 - Phase locked loop clock and data recovery
 - Simple and adaptive equalization
 - Multi-level signaling

- Traditional IBIS also lacks the ability to adequately specify new measurements:
 - Differential overshoot
 - Eye masks

- IBIS 4.2 Multi-lingual Extensions can address both of these limitations
SPICE as an IBIS 4.2 Multi-lingual option

- Good supply of transistor level models for older devices
 - May be encrypted and therefore not portable between tools
- Poor standardization
 - Lots of proprietary primitives
- Extremely slow simulation
 - Particularly when using transistor level models
- Missing a high level view
 - Needed to effectively model complex digital logic
 - Needed to make complex measurements.
AMS as an IBIS 4.2 Multi-lingual option

- VHDL-AMS and Verilog-AMS International standards
 - IEEE and Accellera
- Fast.
 - Models are compiled to machine code just like built in primitives.
 - Digital content is handled in event driven kernel
- Flexible
 - Can provide both behavior and measurement.
- Accurate
 - Uses the same analog non-linear solver as SPICE
IBIS 4.2 Multi-lingual Case Studies

- The model maker and user can best decide whether it is best to create models using the IBIS 4.2 multi-lingual extensions utilizing SPICE or AMS.
- The best solution for the SI Engineer may well be a tool that supports the mixing of both.
- AMS provides some unique features so this presentation is going to provide two case studies that highlight these features.
AMS Case Study One
Full non-linear analysis of a SERDES channel

- Simulate to 10 million data bits
- Custom data pattern
- VHDL-AMS Driver with non-linear drive characteristics and pre-compensation
- Realistic S-Parameter model for packages, two connectors and backplane*
- VHDL-AMS receiver model with built in envelope recorder
- Simulations to be done on an average single processor notebook computer running Microsoft Windows
- Appropriate simulation time-step for accurate results

* As with previous examples used in presentations, this S-parameter model was provided by an independent third party and not optimized for simulation speed
begin
-- output the proper current based on the state of signal din,
-- and values of constants Ipe and Imain
if domain = quiescent_domain use -- if DC then
 itxp == Ipe/2.0; itxn == Ipe/2.0; -- set both outputs to half
elsif din='1' and din'delayed(bit) = '0' use
 itxp == Ipe; itxn == 0.0; -- first pulse (txp positive)
elsif din='1' and din'delayed(bit) = '1' use
 itxp == Imain; itxn == Ipe-Imain; -- normal pulse (txp positive)
elsif din='0' and din'delayed(bit) = '1' use
 itxp == 0.0; itxn == Ipe; -- first pulse (txn positive)
elsif din='0' and din'delayed(bit) = '0' use
 itxp == Ipe-Imain; itxn == Imain; -- normal pulse (txn positive)
end use;
break on din, din'delayed(bit) ; -- deal with the discontinuities

-- P and N-side C_comp, R_term, Vdd
i_r_term_p == (vtxp - Vdd)/R_term; i_c_comp_p == c_comp * vtxp'dot;
i_r_term_n == (vtxn - Vdd)/R_term; i_c_comp_n == c_comp * vtxn'dot;

end architecture;
Results: Simulation to 10 Million Data Cycles
(All simulations completed overnight)
AMS Case Study Two
Automated DDR2 Measurements

- Implement all measurements specified in the DDR2 datasheet in a VHDL-AMS model
- Utilize standard IBIS 3.2 driver and receiver models
DDR2 Electrical and Timing Constraints

IBIS Open Forum, China, 27th October 2006
IBIS 4.2 Measurement Model

IBIS 3.2 Model

DQS

DQ0

Printed Circuit Board

Results

DDR2 Measurement Model

IBIS 3.2 Model

IBIS 3.2 Model

IBIS 3.2 Model
Pre-layout analysis using the IBIS 4.2 Measurement Model
TANGENT MEASUREMENT

Wait for vref crossing
Store data points
Wait for vix_ac cross
Calculate the slope from each point to the vix_ac crossing point
Return the maximum slope
Wait for vix_dc crossing
Calculate the slope from each subsequent point back to the vix_dc crossing
Wait for vref crossing
Return the max slope

begin

-- measure the setup time tangent

wait until VREFDC; -- wait for a crossing of correct direction
max_slope := 0.0; data_point_cntr := 0; setup_crossing <= 0.0*sec;
while not vix_ac'event loop -- store all the data points until vix_ac crossing
 data_point_v(data_point_cntr) := Vin'reference;
 data_point_t(data_point_cntr) := now;
 wait on vix_ac, ASP; -- wait for next event
 data_point_cntr := data_point_cntr + 1;
end loop; -- go on to find the maximum slope
setup_crossing <= now;
for i in min_slope to data_point_cntr-1 loop
 slope := (crossing_point_v - data_point_v(i)) / (crossing_point_t - data_point_t(i));
 if slope > max_slope then max_slope := slope; end if;
end loop;
setup_slope <= max_slope;

-- measure the hold tangent

wait until not vix_dc; -- wait for opposite crossing of vix_dc
max_slope := 0.0;
crossing_point_v := Vin'reference; crossing_point_t := now;
-- calculate slope of each point until vix_dc, or max_points
while not VREFDC'event loop
 wait on VREFDC, ASP;
 slope := -(Vin'reference - crossing_point_v) / (now - crossing_point_t);
 if slope > max_slope then max_slope := slope; end if;
end loop;
hold_slope <= max_slope; -- in v/s
end process;

(error and exception handling removed for clarity)
U2 pin 1 Violation - MAXOVERSHOOT or MAXUNDERSHOOT Level Exceeded at time: 2337
U2 pin 1 Violation - MAXOVERSHOOT or MAXUNDERSHOOT Level Exceeded at time: 4790
U2 pin 1 Violation - MAXOVERSHOOT or MAXUNDERSHOOT Level Exceeded at time: 7290
U2 pin 1 Violation - MAXOVERSHOOT or MAXUNDERSHOOT Level Exceeded at time: 9815
U2 pin 1 Violation - MAXOVERSHOOT or MAXUNDERSHOOT Level Exceeded at time: 12294
U2 pin 1 Violation - MAXOVERSHOOT or MAXUNDERSHOOT Level Exceeded at time: 14816
U2 pin 1 Violation - MAXOVERSHOOT or MAXUNDERSHOOT Level Exceeded at time: 17293
U2 pin 1 setup check PASSED. Expected: 0.275 ns. Actual: 1.55 ns at time: 4536
U2 pin 2 Violation - DQS exceeded VIXACMIN at Differential Crossing at time: 1275
U2 pin 2 Violation - DSQ exceeded VINDCMAX or VINDCMIN at time: 5914
U2 pin 2 Violation - DSQ exceeded VINDCMAX or VINDCMIN at time: 5955
U2 pin 1 Setup Check PASSED. Expected: 0.275 ns. Actual: 1.55 ns at time: 4536
U2 pin 2 Warning: dqs slew value out of range of table.
 dqs_slew= 4.33e+9. Max table index value= 4.00e+009 at time: 5799
U2 pin 2 Warning: dq slew value out of range of table.
 dq_slew= 3.566e+9. Max table index value= 2.00e+009 at time: 5799
U2 pin 1 Hold Check PASSED, Expected: 0.32 ns. Actual: 1.177 ns. at time: 5799
Model for the Full DDR2 Channel Integrating both Behavior and Measurement *

* Note: This model is not in strictly IBIS 4.2 compliant because it uses an external circuit that references an IBIS 3.1 model
Special thanks to

Randy Wolff and his associates at Micron for assistance in developing DDR2 simulation and measurement models.