IBIS modeling of DDR2 in conjunction with linear channel analysis

Ian Dodd
Architect, High Speed Tools
ian_dodd@mentor.com

27th October 2006

© Mentor Graphics Corp., 2006, Reuse by written permission only. All rights reserved.
Overview

- High performance source synchronous buses, including DDR2 are known to be susceptible to resonances
 - Established solution is to add compensation capacitors
- It is difficult to demonstrate these resonances in traditional time domain SI simulators
 - Resonance only occurs with specific repeated bit sequences
- Linear channel analysis can identify the resonances but has limitations in its ability to determine if they are harmful
 - DDR2 drivers exhibit non-linearity's which may affect characteristics such as overshoot
- This paper describes the early results of our analysis of resonances in DDR2 buses using of both tradition circuit simulation using IBIS 4.2 models and linear channel analysis
Analysis Steps

1. Extract DDR2 Address net from layout
 - Example has motherboard, 2 DDR2 modules and connectors

2. Measure pulse response of the net using standard circuit simulation
 - IBIS 4.2 driver and receiver models
 - Simulating multiple pulses allows the degree of non-linearity to be determined

3. Linear channel analysis
 - Determine worst case bit sequence
 - Create eye diagram with linearized drivers and receivers

4. Standard circuit simulation using worst case bit sequence
 - Create eye diagram without linearization
1. DDR2 address net extracted from layout
2. Full non-linear simulation to establish pulse response
3. Linear Channel Analysis

Eye Diagram

6% Non-linearity

Worst Case Stimulus
4. Full Non-linear simulation using Worst Case Stimulus
Further Work

- This paper is based on the early results of this investigation into resonances on DDR2 buses.
- We plan to further examine the detailed affects of channel layouts, connector characteristics and the optimization of compensation capacitors.
Mentor Graphics

www.mentor.com