System-Level Timing Closure
Using IBIS Models

Barry Katz
President/CTO, SiSoft
Asian IBIS Summit
Agenda

• High Speed System Design
• Establishing timing model
 – Derivation of timing equations
 – Idealized timing analysis
 – The role of signal integrity
 – Reconciling signal integrity with timing
• Pre-route exploration
• Driving physical design
• Post-route validation
• Design analysis reuse
• Case study: DDR2 memory
High Speed System Design
... Not Just “Signal Integrity”

- High Speed Design involves multiple disciplines
- Changes in any area drive changes in others
- Mastery of modeling details & process flow is essential for success
System Level Timing Closure

- Successful high speed design requires a rigorous methodology for ensuring positive design margin across all combinations of:
 - Component timing (process)
 - Voltage & temperature
 - Package & PCB routing lengths
 - PCB manufacturing variations (Z_0, loss)
Establishing Timing Budgets

- High speed interfaces have one or more “transactions” that require timing closure
- Memory example:
 - Address/control
 - Data read
 - Data write
 - Strobe to Clock
- Timing relationships must be identified and closed for each different transaction
Source-Sync Transaction Example

- Establish component timing & transfer protocol
- Derive timing equations
- Idealized timing analysis
- Signal integrity analysis and Timing Closure
Component Timing, Transfer Protocol

1. Design Goals
 - Clock = 250 MHz
 - Source Sync, DDR transfer
 - Data Unit Interval = 2ns
 - 90° clock shift on PCB

2. Driver Timing
 - CLKOUT
 - [0ns, 0ns]
 - [-0.3ns, 0.3ns]
 - Q0 .. Q15
 - [0ns, 0ns]
 - [-0.3ns, 0.3ns]

3. Interconnect Delays
 - CLKIN
 - [0ns, 0ns]
 - [0.4ns, 0.4ns]
 - D0 .. D15
 - [0.4ns, 0.4ns]
Derive Timing Equations

 = [0ns + a1] – [0.3ns + b2] - [0.4ns]
 = a1 – b2 – 0.7ns

Hold margin = [Data UI] + [early data] – [late clock] - [hold requirement]
 = [2ns] + [-0.3ns + b1] – [0ns + a2] - [0.4ns]
 = 1.3ns + b1 – a2
Idealized Timing Analysis

Minimum data length = 3", at 180ps/in = 0.54ns

CLKOUT
[0ns, 0ns]

Q0 .. Q15
[-0.3ns, 0.3ns]

CLKIN
[0ns, 0ns]

D0 .. D15
[0.4ns, 0.4ns]

Setup margin = a1 – b2 – 0.7ns
= 1.54ns – 0.54ns – 0.7ns
= 0.3 ns

Hold margin = 1.3ns + b1 – a2
= 1.3ns + 0.54ns – 1.54ns
= 0.3ns
The Role of Signal Integrity

- Detailed analysis of digital switching behavior
- IBIS or HSpice models define I/O buffer behavior
- Accounts for
 - Actual circuit loading
 - Reflections / ringing
 - Circuit topology
 - Inter-symbol interference
 - Switching thresholds

Idealized Delays

Real-World Delays
Reconciling SI with Timing

- Static timing and signal integrity measurements must be compatible
- SI measurements are “normalized” to conditions under which loading is specified
 - IBIS Vref, Cref, Rref, Vmeas
- Timing Closure occurs when integrated timing/SI results show acceptable setup/hold margins
Building an Executable Timing Model

- For each interface, all transactions must be validated for all cases:
 - Component timing (process)
 - Voltage, temperature
 - PCB variations
- Creating an executable timing model to perform automatic regression is ideal
- Possibilities
 - Excel
 - Custom scripting
 - EDA tools

\[t_{cycle} = t_{co} + t_{final \ settling} + t_{setup} + t_{skew} + t_{jitter} + t_{SSO} + t_{ISI} \]
Pre-Route SI Exploration

• Pre-route simulations model planned
 – Drivers
 – Receivers
 – Routing topology & lengths
 – Termination

• Simulated interconnect delays are extracted and plugged back into the Executable Timing Model

• Setup and hold margins are calculated for temperature, process and voltage corners
Driving Physical Design

- Pre-route SI/Timing analysis defines PCB routing rules
- Rules usually include pin ordering, length limits and stub matching
- Driving automated rules into PCB CAD is essential

Match stub lengths to within 0.2”
Post-Route Validation

- Routed topologies are extracted from PCB database and simulated
- Simulated interconnect delays are extracted and plugged back into system timing model
- Setup and hold margins are calculated for temperature, process and voltage corners
Once all the SI/timing data for an interface has been captured, it should be possible to directly reuse that information for multiple instances in a project or other projects.

Each interface kit contains net class schematics, timing data & SI models.
Case Study: DDR2 System Memory

- DDR2 supports one or two DIMM modules
- DIMM Modules
 - Registered and Unbuffered
 - 4 to 18 memory devices
- Two module, data write transaction is presented here
- Complete case study:
 “Features and Implementation of High-Performance 667Mbs and 800Mbs DDRII Memory Systems”
 - Presented by Micron & SiSoft
 - DesignCon West, 2005
DDR2 Data Write Configuration

- Termination strategy is dynamic; depends on how many DIMMs are present and which device is receiving
- Simulation environment must switch receiver models based on which case is being analyzed

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Write to</th>
<th>DQ Active-Term Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Controller</td>
<td>Dram at Slot 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Front Side</td>
</tr>
<tr>
<td>2R / 2R</td>
<td>Slot 1</td>
<td>No Term</td>
</tr>
<tr>
<td></td>
<td>Slot 2</td>
<td>No Term</td>
</tr>
<tr>
<td>2R / 1R</td>
<td>Slot 1</td>
<td>No Term</td>
</tr>
<tr>
<td></td>
<td>Slot 2</td>
<td>No Term</td>
</tr>
<tr>
<td>1R / 2R</td>
<td>Slot 1</td>
<td>No Term</td>
</tr>
<tr>
<td></td>
<td>Slot 2</td>
<td>No Term</td>
</tr>
<tr>
<td>1R / 1R</td>
<td>Slot 1</td>
<td>No Term</td>
</tr>
<tr>
<td></td>
<td>Slot 2</td>
<td>No Term</td>
</tr>
<tr>
<td>2R / Empty</td>
<td>Slot 1</td>
<td>No Term</td>
</tr>
<tr>
<td>Empty / 2R</td>
<td>Slot 2</td>
<td>No Term</td>
</tr>
<tr>
<td>1R / Empty</td>
<td>Slot 1</td>
<td>No Term</td>
</tr>
<tr>
<td>Empty / 1R</td>
<td>Slot 2</td>
<td>No Term</td>
</tr>
</tbody>
</table>
Slew Rate Derating – “Virtual Eye”

Eye at device pad
(simulated result)

Eye at receiver output
(simulated result)

Waveform derating scheme

Virtual eye at receiver
(computed result)

Waveform processing

4.60ns Eye

4.75ns Eye

SiSoft
DDR2 Analysis Results

Data Write Slow / Fast Corners

<table>
<thead>
<tr>
<th>Setup Margin (ns)</th>
<th>Hold Margin (ns)</th>
<th>Transfer Net</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.336</td>
<td>3.167</td>
<td>addcmd_8L_8L</td>
</tr>
<tr>
<td>No AC specs</td>
<td>No AC specs</td>
<td>ck_4L_slot1</td>
</tr>
<tr>
<td>0.686</td>
<td>0.93</td>
<td>ctrl_4L_slot1</td>
</tr>
<tr>
<td>0.697</td>
<td>0.964</td>
<td>ctrl_4L_slot2</td>
</tr>
<tr>
<td>0.468</td>
<td>0.205</td>
<td>dm_2R_2R</td>
</tr>
<tr>
<td>0.213</td>
<td>-0.148</td>
<td>dq_2R_2R</td>
</tr>
<tr>
<td>1.155</td>
<td>0.944</td>
<td>dqs_2R_2R</td>
</tr>
</tbody>
</table>

Asian IBIS Summit - Shanghai, China - October 27, 2006
3.60ns Eye

High-speed system design requires a rigorous, repeatable methodology for achieving **Timing Closure**

- Static Timing, Signal Integrity, and physical design rules are all interrelated

- An Executable Timing Model allows for a user to validate all transactions across all cases

- Signal Integrity analysis must be performed in accordance with the system timing model

<table>
<thead>
<tr>
<th>Setup Margin (ns)</th>
<th>Hold Margin (ns)</th>
<th>Transfer Net</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.336</td>
<td>3.167</td>
<td>addcmd_8L_8L</td>
</tr>
<tr>
<td>No AC specs</td>
<td>No AC specs</td>
<td>ck_4L_slot1</td>
</tr>
<tr>
<td>No AC specs</td>
<td>No AC specs</td>
<td>ck_4L_slot2</td>
</tr>
<tr>
<td>0.686</td>
<td>0.93</td>
<td>ctrl_4L_slot1</td>
</tr>
<tr>
<td>0.697</td>
<td>0.964</td>
<td>ctrl_4L_slot2</td>
</tr>
<tr>
<td>0.468</td>
<td>0.205</td>
<td>dm_2R_2R</td>
</tr>
<tr>
<td>0.213</td>
<td>-0.148</td>
<td>dq_2R_2R</td>
</tr>
<tr>
<td>1.155</td>
<td>0.944</td>
<td>dqs_2R_2R</td>
</tr>
</tbody>
</table>