IBIS Model Engineering for SI Simulation
Asian IBIS Summit (CHINA), October 27, 2006

Kazuhiko Kusunoki
k-kusu@cybernet.co.jp
As time goes by

Number of IBIS Model User

Usefulness

Increase
IBIS model goes mainstream

Time/Cost → all-at-once-ness

- Preparation
- Inspection
- Verification
- Education
Challenge to the SI simulation Engineering of PCB Design

Post Layout Simulation

Primary 1980s~

- Layout Design
- SIM
- ECO
- Trial production

(Reduce the repeat count of trial production)

Sift then Reduce

Secondly 1990s~

Pre Layout Simulation

- SIM
- Layout Design
- ECO
- Trial production

(Reduce the time of ECO)

Next 2000s~

Front loaded SI Engineering
SI Simulation

1. Modeling → Simulation
2. Simulation → Correction
3. Correction → SI Management
4. SI Management → Sim Result
5. Sim Result → Error has occurred
6. Error has occurred → Correction
7. Correction → SI Management

© 2006 CYBERNET SYSTEMS CO., LTD. All Rights Reserved.
SI Simulation

Front loaded IBIS Engineering

- Modeling
- Simulation
- Find Error
- Correction

- Sim Result
- SI Management

No backslide
IBIS model Engineering as Front loaded SI Engineering

To minimized the time of SI simulation

- **Modeling**
 - Incoming inspection for IBIS Model
 - Check IBIS Model
 - Verification IBIS Model
 - Correction IBIS Model
 - Prepare IBIS Model
 - Tune IBIS Model

 Make decisions on SI view
Incoming inspection for IBIS Model

• Syntax Check
• I/O Cell Verification

Example:

- Convergence analysis
- Clamp double-counting
- Finding Irregular point
• Verification IBIS Model

Test circuit for IBIS Verification

Example:
• Correction IBIS Model

Example:

Erase and data interpolation

Shift
• Prepare IBIS Model

Pin/Signal/Model Assign

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Signal</th>
<th>Model</th>
<th>R_pin</th>
<th>L_pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>A001</td>
<td></td>
<td>EDA7724A_IN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A002</td>
<td></td>
<td>EDA7724A_IN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A003</td>
<td></td>
<td>EDA7724A_IN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A004</td>
<td></td>
<td>EDA7724A_IN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A005</td>
<td></td>
<td>EDA7724A_IN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A006</td>
<td></td>
<td>EDA7724A_IN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A007</td>
<td></td>
<td>EDA7724A_IN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A008</td>
<td>GND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A009</td>
<td>POWER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A010</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A011</td>
<td></td>
<td>EDA7724A_OUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A012</td>
<td></td>
<td>EDA7724A_OUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A013</td>
<td></td>
<td>EDA7724A_OUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A014</td>
<td></td>
<td>EDA7724A_OUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A015</td>
<td></td>
<td>EDA7724A_OUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B001</td>
<td></td>
<td>EDA7724A_OUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BGA

Spiral pin number location
• Tune IBIS Model

More I-O H/L

Less I-O H/L

Detail Edit

Real and Virtual Wave

Comparison-data for the best result
What the SI Electronics whiz does for IBIS?

- IBIS model looks good. Need series termination. Topology should be Daisy.
- Simulation with leading hypothesis.
- Engineering instruction to Layout designer.
- Keep the space of place for series resistor in advance.
What the Non SI Electronics whiz may do?

Schematic

No SI view

IBIS Model

Simulation with groundless suspicion

Try & error

Error

NG

Result

PCB under suspicion

Engineering instruction to Layout designer

Keep the space of place for series resistor if it’s possible
IBIS Model Engineering as Front loaded SI Engineering

IBIS Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Type</td>
<td>I/O</td>
</tr>
<tr>
<td>Polarity</td>
<td>Non-Inverting</td>
</tr>
<tr>
<td>Enable</td>
<td>Active-Low</td>
</tr>
<tr>
<td>Vinl</td>
<td>0.66 V</td>
</tr>
<tr>
<td>Vinh</td>
<td>2.00 V</td>
</tr>
<tr>
<td>CComp 2.55pF</td>
<td>1.18pF 3.91pF</td>
</tr>
<tr>
<td>Voltage Range</td>
<td>3.3V 3.0V 3.6V</td>
</tr>
<tr>
<td>Power Clamp Reference</td>
<td>3.3V 3.0V 3.6V</td>
</tr>
<tr>
<td>GND Clamp Reference</td>
<td>0.0V 0.0V 0.0V</td>
</tr>
<tr>
<td>Pullup Reference</td>
<td>3.3V 3.0V 3.6V</td>
</tr>
<tr>
<td>Pulldown Reference</td>
<td>0.0V 0.0V 0.0V</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>49.0 125.0 -20.0</td>
</tr>
<tr>
<td>Pulldown</td>
<td></td>
</tr>
<tr>
<td>-3.300E+00</td>
<td>-2.753E-01</td>
</tr>
<tr>
<td>-3.200E+00</td>
<td>-2.688E-01</td>
</tr>
<tr>
<td>-3.100E+00</td>
<td>-2.619E-01</td>
</tr>
</tbody>
</table>

Predict Signal Wave from IBIS Model
IBIS model Engineering as Front loaded SI Engineering

- Take a look (evaluate a symptom) of Output Current
- Take a look (evaluate a symptom) of Rise/Fall Speed
- Take a look (evaluate a symptom) of Signal amplitude

- Trend prediction for Routing Topology, Cross Talk, etc.
To minimized the time of SI simulation

Pre Layout Simulation

Secondly 1990s~

Prevention of the backslide

NEXT 2000s~

Front loaded SI Engineering
As far in advance as possible

(Reduce the time of SIM)
IBIS model goes mainstream

Creative Engineering imagination comes into practical use

Usefulness & Comfortable

Adjustment

Pin Grid Assign

Verification

Compare

Model/Pin Assign

© 2006 CYBERNET SYSTEMS CO., LTD. All Rights Reserved.
Make IBIS more comfortable

使IBIS使用更方便

Tune

Indicate

Verify