ODT, Pre-Emphasis, and Speed

Bob Ross
Asian IBIS Summit
Shanghai, CHINA
October 27, 2006

bob@teraspeed.com
On-Die Terminations (ODT)

- Model the device structure
- More details on “DEC” (Deviate, Extrapolate, Calculate) process:
 - http://www.eda.org/pub/ibis/summits/sep05/ross2.pdf
Four ODTs With Same Total I-V

1. [Gnd Clamp] (1.2 V, 50 Ω)
2. [Power Clamp] (0.6 V, 50 Ω)
3. “Clip and Extend” (both clamps clipped)
4. “DEC” (75 Ω, 150 Ω)
Real “50 Ω” ODT Choices

1. I-V in [Gnd Clamp]
2. I-V in [Power Clamp]
3. “Clip and Extend” 52.8 Ω
4. “DEC” 94.2 Ω, 120 Ω

Page 4 © 2006 Teraspeed Consulting Group LLC
Pre-emphasis

• Add [Driver Schedule] to match the device structure

• Examples:
 – 2-tap current mode logic (CML) 1-bit delay (de-emphasis) structure
 – Kickers for internal logic controlled boosts (and adjusted waveform delays)
CML Structure using IBIS Open_drain Models and Connected by [Diff Pin]

- **Top-level**
 - ODT [Power Clamp]
 - MAIN [Pulldown]
 - Extracted waveforms with ODT & 50 Ω
 - Pre-emphasis = 0
 - [Driver Schedule]
- **MAIN [Pulldown]**
 - Scaled waveforms
- **BOOST [Pulldown]**
 - Scaled waveforms
Actual SPICE Configuration with Differential Control

IN+ Input bit pattern + TX+

IN- + MAIN + TX-

Inverse 1-bit delays

[Driver Schedule]

<table>
<thead>
<tr>
<th>Model_name</th>
<th>Rise_on_dly</th>
<th>Rise_off_dly</th>
<th>Fall_on_dly</th>
<th>Fall_off_dly</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN</td>
<td>0</td>
<td>NA</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>BOOST</td>
<td>NA</td>
<td>0.47059ns</td>
<td>NA</td>
<td>0.47059ns</td>
</tr>
</tbody>
</table>
Different Typ-Min-Max Kicker Times (Internal Logic Control Kickers)

<table>
<thead>
<tr>
<th>Model_name</th>
<th>Rise_on_dly</th>
<th>Rise_off_dly</th>
<th>Fall_on_dly</th>
<th>Fall_off_dly</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN_TOTEM</td>
<td>0</td>
<td>NA</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>PMOS_OS</td>
<td>0</td>
<td>1.05n</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>NMOS_OD</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
<td>1.05n</td>
</tr>
</tbody>
</table>

![Diagrams of PMOS_OS, MAIN_TOTEM, and NMOS_OD]

![Graph of time vs. voltage for PMOS_OS, MAIN_TOTEM, and NMOS_OD]
Speed – How Fast Is IBIS?

- World’s fastest published IBIS model:

```
[IBIS Ver] 1.1
[File Name] fastest.ibs
[File Rev] 0
[Date] October 27, 2006
[Component] Worlds_Fastest_Model
[Manufacturer] Teraspeed Consulting Group

<table>
<thead>
<tr>
<th>Package</th>
<th>R_pkg</th>
<th>L_pkg</th>
<th>C_pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pin</th>
<th>signal_name</th>
<th>model_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open_Drain</td>
<td>FAST_OD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[Model]</th>
<th>FAST_OD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model_type</td>
<td>Open_drain</td>
</tr>
<tr>
<td>C_comp</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voltage Range</th>
<th>-1e-100</th>
<th>2e-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulldown</td>
<td>-20E-103</td>
<td>40E-103</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ramp</th>
<th>dV/dt_r</th>
<th>dV/dt_f</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.3e-100/0.6E-109</td>
<td>NA NA</td>
</tr>
</tbody>
</table>

1.0E-100 V, 50 Ω driver

1.0E-109 s ramps
Conclusion

• How fast is IBIS?
  – “As fast as you are smart”

• How accurate is IBIS?
  – Configure IBIS to match device structure for best accuracy
  – IBIS is as accurate as you are smart