System-Level Timing Closure Using IBIS Models

Barry Katz President/CTO, SiSoft Asian IBIS Summit

Asian IBIS Summit – Tokyo, Japan - October 31, 2006

0 Õ

0

Signal Integrity Software, Inc.

Agenda

- High Speed System Design
- Establishing timing model
 - Derivation of timing equations
 - Idealized timing analysis
 - The role of signal integrity
 - Reconciling signal integrity with timing
- Pre-route exploration
- Driving physical design
 - Post-route validation
- Design analysis reuse
- Case study: DDR2 memory

High Speed System Design Not Just "Signal Integrity"

Constraint-Driven Design

- High Speed Design involves
 multiple disciplines
- Changes in any area drive changes in others
- Mastery of modeling details & process flow is <u>essential</u> for success

System Level Timing Closure

 Successful high speed design requires a rigorous methodology for ensuring positive design margin across all combinations of:

SiSofi

- Component timing (process)
- Voltage & temperature
- Package & PCB routing lengths
- PCB manufacturing variations (Z_0 , loss)

Establishing Timing Budgets

õ

- High speed interfaces have one or more "transactions" that require timing closure
- Memory example:
 - Address/control
 - Data read
 - Data write
 - Strobe to Clock
- Timing relationships must be identified and closed for each different transaction

Source-Sync Transaction Example

- Establish component timing & transfer protocol
- Derive timing equations
- Idealized timing analysis
- Signal integrity analysis and Timing Closure

% SiSoff

Component Timing, Transfer Protocol

Asian IBIS Summit - Tokyo, Japan - October 31, 2006

õ

Derive Timing Equations

Setup margin = [early clock] – [late data] – [setup requirement] = [0ns + a1] - [0.3ns + b2] - [0.4ns]= a1 - b2 - 0.7ns

Hold margin = [Data UI] + [early data] – [late clock] - [hold requirement] = [2ns] + [-0.3ns + b1] - [0ns + a2] - [0.4ns]= 1.3ns + b1 - a2

SiSofi

Idealized Timing Analysis

Minimum data length = 3° , at 180 ps/in = 0.54 ns

The Role of Signal Integrity

Idealized Delays

Real-World Delays

- Detailed analysis of digital switching behavior
- IBIS or HSpice models define I/O buffer behavior
- Accounts for
 - Actual circuit loading
 - Reflections / ringing
 - Circuit topology
 - Inter-symbol interference
 - Switching thresholds
 - Process, Voltage, and Temperature Variation

% SiSoff

Reconciling SI with Timing

õ

- Static timing and signal integrity measurements <u>must</u> be compatible
- SI measurements are "normalized" to conditions under which loading is specified
 - IBIS Vref, Cref, Rref, Vmeas
- Timing Closure occurs when integrated timing/SI results show acceptable setup/hold margins

SiSoff

Building an Executable Timing Model

Microsoft Exce			·	w Help			Type a que:	tion for h	* • •	2 × 9							
		_														_	
2 2 2 a a	s 🖄 12 S I	2 🗄 🔒	Pol Reply wi	th Changes	Epd Review	-										F	O
H30 -	6																
A	B	С	D	E	F		G		Н	-						tr	a
Setup 1 Margin (ns)	Hold Margin (ns)		Max Etch Delay (ns)	Transfer Net	Drive		Recei		Column								
2 0.153 3 0.16	3 1.455	1.727 1.73	2.233	addcmd_8	L ddr2_control L ddr2_control	ler o	ddr2_sdram	_1	mbl<1>	÷.						Vá	اد
4 0.160 5 0.160	B 1.475	1.747	2.218	addcmd_8	L ddr2_control	ler (ddr2_sdram ddr2_sdram	_3	mbl<1> mbl<1>	1						VC	
6 0.160 7 0.160	B 1.475	1.747	2.218	addomd_8	L ddr2_control L ddr2_control	ler d	ddr2_sdram ddr2_sdram	5	mpi<1> mbl<1> mbl<1>	÷.							
8 0.145	9 1.446	1.718	2.237	addcmd_8	L ddr2_control L ddr2_control	ler e	ddr2_sdram ddr2_sdram	7	mbl<1>	÷.						_	_
9 0.158 10 No AC specs	No AC specs	1.727	1.267	ck_4L	L ddr2_control ddr2_control	ler o	ddr2_sdram ddr2_sdram	1_c	mbl<1> NoDef	1							
11 No AC specs 12 No AC specs	No AC specs	1.263	1.267	ck_4L ck_4L	ddr2_control ddr2_control	ler o	ddr2_sdram ddr2_sdram	3_c	NoDef NoDef	±							
13 No AC specs 14 0.421		1.263		ck_4L ctrl_4L	ddr2_control ddr2_control		ddr2_sdram ddr2_sdram		NoDef mbl<1>							-	-
	Microsoft Excel - 1				add control		aar7 edean	-	mblels								
18 0.	Ele Edt Yew					rial	• 10	• B .	/ U 🔳 🔳		15%,		uestion for help			_	_
20 0	🖢 🖄 🖄 🖂 🌭 🤅					·		_									
22 0.	A1 -	∱ Transf	fer Net		5	5					L K						
23 0. 24 1.		D	Ų	0	c	r	DC-Vref	AC-Vref		2	n.	L	м	^		C	re
25 No AC spe					Min	Max	Derate	Derate Slew			Vref	Min Vintleas	Max VinMeas	Min		Ŭ	
27 No AC spe	Transfer Net 2 addcmd 8Lddr2	Driver	Receiver	R/F	Derating (ns) 0.039	Derating (ns) -0.035	Rate (V/ns) 0.763	Rate (V/ns) 0.735	Corner	Edge #	Crossing Time (ns 2 33.36		VinMeas Time (ns) 33.708	Derated Time (ns) 33.244		tii	m
29 30 H 4 F H / V	3 addcmd_8Lddr2_ 4 addcmd_8Lddr2_	controller controller	ddr2_sdram_1 ddr2_sdram_1	R F	0.028	-0.042	2 0.815	0.722	2 TTTE TTTE		3 38.41 4 48.35	38.257 48.185	48.716	38.285 48.221		- CH	
Ready E	5 addcmd_8Lddr2_ 6 addcmd_8Lddr2_ 7 addcmd_8Lddr2_	controller	ddr2_sdram_1 ddr2_sdram_1 ddr2_sdram_1	F	0.041 0.007 0.03	-0.046 -0.016 -0.052	5 0.947	0.878	3 TTTE 5 TTTE 3 TTTE		5 58.41 6 63.35 7 78.41	63.202	68.779 63.693 78.784	58.279 63.209 78.272		a	сıf
5	B addcmd 8L ddr2 addcmd 8L ddr2	controller controller	ddr2_sdram_1 ddr2_sdram_1	F	0.023	-0.033	0.845 0.735	0.768	3 TTTE		8 103.34 9 108.40	103.191	103.717 108.749	103.214 108.277		a	
1	D addcmd 8L ddr2 1 addcmd 8L ddr2 2 addcmd 8L ddr2	controller	ddr2_sdram_1 ddr2_sdram_1 ddr2_sdram_1	F R	0.005 0.059 0.016	-0.03 -0.052 -0.036	0.679	0.679	5 TTTE 9 TTTE 1 TTTE	1	0 113.33 11 123.42 12 133.34	123.222		113 212 123 282 133 221			
1	3 addcmd_8Lddr2_ 4 addcmd_8Lddr2_	controller controller	ddr2_sdram_1 ddr2_sdram_2	R	0.026	-0.023	3 0.826 9 0.763	0.826	TTTE	1	3 138.41 2 33.36	138.211	138.72 33.708	138.238 33.244		P	\mathbf{O}
1	5 addcmd_8Lddr2_ 6 addcmd_8Lddr2_	controller	ddr2_sdram_2 ddr2_sdram_2	R F	0.034	-0.042	0.805	0.672	2 TTTE		3 38.41 4 48.35	48.193		38.289 48.224	-		U
1	7 addcmd_8Lddr2_ 8 addcmd_8Lddr2_ 9 addcmd_8Lddr2_	controller	ddr2_sdram_2 ddr2_sdram_2 ddr2_sdram_2	F	0.043 0.034 0.047	-0.048 -0.043 -0.047	3 0.785	0.721	TTTE TTTE TTTE		5 58.40 6 63.36 7 78.41	63.2	63.709	58.273 63.234 78.279			
2	0 addcmd_8Lddr2_ 1 addcmd_8Lddr2_	controller controller	ddr2_sdram_2 ddr2_sdram_2	F	0.047	-0.048	8 0.729 5 0.887	0.690	TTTE		8 103.36 9 108.37	103.185	103.728 108.738	103.232 108.249			_
2	2 addcmd_8Lddr2 3 addcmd_8Lddr2 4 addcmd_8Lddr2	controller	ddr2_sdram_2 ddr2_sdram_2 ddr2_sdram_2	F R F	0.03	-0.027 -0.026 -0.036	5 1.002	0.811		1	0 113.36 11 123.39 12 133.38	123.243	123.763	113 213 123 243 133 212			
222	5 addcmd 8L ddr2 6 addcmd 8L ddr2	controller controller	ddr2_sdram_2 ddr2_sdram_3	R	-0.005	-0.016	5 1.056 9 0.763	0.874	TTTE		3 138.37 2 33.36	138.246	138.745 33.708	138.241 33.244			
22	7 addcmd_8Lddr2_ 8 addcmd_8Lddr2_ 9 addcmd_8Lddr2	controller	ddr2_sdram_3 ddr2_sdram_3 ddr2_sdram_3	R F	0.032	-0.042 -0.051 -0.05	0.787	0.681	TTTE		3 38.41 4 48.35 5 58.40	48.189	48.723	38 288 48 223 58 282			-
33	0 addcmd_8L ddr2 1 11 addcmd_8L ddr2	controller controller	ddr2_sdram_3 ddr2_sdram_3	F	0.032	-0.04	0.795	0.736	S TTTE		6 63.39 7 78.41	63.201 78.237	63.699 78.778	63 233 78 277			
3	 addcmd_8L ddr2_i M / Eye Detail 		ddr2_sdram_3 Details / Wav		0.035 by Triet 🖌 War	-0.051 reform Marg			? TTTE	11	8 103.35	103.189	103.722	103.224		_	_
Re	oady												NUM				
								_		_							
4		4	_	4							_	4		4		+t _{ssc}	

- For each interface, all transactions must be validated for all cases:
 - Component timing (process)
 - Voltage, temperature
 - PCB variations
- Creating an executable timing model to perform automatic regression is ideal

SiSofi

- **Possibilities**
 - Excel
 - **Custom scripting**
 - **EDA** tools

Asian IBIS Summit - Tokyo, Japan - October 31, 2006

Pre-Route SI Exploration

õ

- Pre-route simulations model planned
 - Drivers
 - Receivers
 - Routing topology & lengths
 - Termination
- Simulated interconnect delays are extracted and plugged back into the Executable Timing Model
- Setup and hold margins are calculated for temperature, process and voltage corners

% SiSoff

Driving Physical Design

Asian IBIS Summit - Tokyo, Japan - October 31, 2006

- Pre-route SI/Timing analysis defines PCB routing rules
- Rules usually include pin ordering, length limits and stub matching
- Driving automated rules into PCB CAD is essential

SiSoff

Post-Route Validation

- Routed topologies are extracted from PCB database and simulated
- Simulated interconnect delays are extracted and plugged back into system timing model
- Setup and hold margins are calculated for temperature, process and voltage corners

2006

SiSofi

Design Analysis Reuse

000

000

Π

Õ

Once all the SI/timing data for an interface has been captured, it should be possible to directly reuse that information for multiple instances in a project or other projects

Each interface kit contains net class schematics, timing data & SI models

% SiSoff

Case Study: DDR2 System Memory

- DDR2 supports one or two DIMM modules
- DIMM Modules
 - Registered and Unbuffered
 - 4 to 18 memory devices
- Two module, data write transaction is presented here
- Complete case study:

"Features and Implementation of High-Performance 667Mbs and 800Mbs DDRII Memory Systems"

- Presented by Micron & SiSoft
- DesignCon West, 2005
- http://www.sisoft.com/papers.asp

DDR2 Data Write Configuration

õ

Write Configurations									
		DQ Active-Term Resistance							
Configuration	Write to	Controller	Dram a	at Slot 1	Dram at Slot 2				
		Controller	Front Side	Back Side	Front Side	Back Side			
2R / 2R	Slot 1	No Term	No Term	No Term	50 or 75 ohm	No Term			
217/217	Slot 2	No Term	50 or 75 ohm	No Term	No Term	No Term			
2R / 1R	Slot 1	No Term	No Term	No Term	50 or 75 ohm	Empty			
20/10	Slot 2	No Term	50 or 75 ohm	No Term	No Term	Empty			
1R / 2R	Slot 1	No Term	No Term	Empty	50 or 75 ohm	No Term			
IR / ZR	Slot 2	No Term	50 or 75 ohm	Empty	No Term	No Term			
1R / 1R	Slot 1	No Term	No Term	Empty	50 or 75 ohm	Empty			
	Slot 2	No Term	50 or 75 ohm	Empty	No Term	Empty			
2R / Empty	Slot 1	No Term	150 ohm	No Term	Empty	Empty			
Empty / 2R	Slot 2	No Term	Empty	Empty	150 ohm	No Term			
1R / Empty	Slot 1	No Term	150 ohm	Empty	Empty	Empty			
Empty / 1R	Slot 2	No Term	Empty	Empty	150 ohm	Empty			

- Termination strategy is dynamic; depends on how many DIMMs are present and which device is receiving
- Simulation environment must switch receiver models based on which case is being analyzed

Slew Rate Derating – "Virtual Eye"

00

00/

00

00

000

õ

0

)80

Õ

SiSofi

Summary

Setup Margin	Hold Margin				
(ns)	(ns)	Transfer Net			
0.336	3.167	addcmd_8L_8L			
No AC specs	No AC specs	ck_4L_slot1			
No AC specs	No AC specs	ck_4L_slot2			
0.686	0.93	ctrl_4L_slot1			
0.697	0.964	ctrl_4L_slot2			
0.468	0.205	dm_2R_2R			
0.213		dq_2R_2R			
1.155	0.944	dqs_2R_2R			

- High-speed system design requires a rigorous, repeatable methodology for achieving Timing Closure
- Static Timing, Signal Integrity, and physical design rules are all interrelated
- An Executable Timing Model allows for a user to validate all transactions across all cases
- Signal Integrity analysis must be performed in accordance with the system timing model

% SiSoff