

Chiplet Signal Integrity Simulation

Xiuguo.jiang@keysight.com Keysight EDA SE & CSM Manager

Eric.li@Keysight.com Keysight EDA SE

Asian IBIS Summit (Shanghai, PRC) October 25, 2024

Chiplet Signal Integrity Simulation

Agenda: Signal Integrity Journey in the UCIe Context

- What is Chiplet
- Why is the industry shifting to the

chiplet design philosophy

UCle[®] Eye mask Equalization • **Universal Chiplet** Loss and crosstalk level Interconnect Express $\overline{}$ **Chiplet Bus T-Line Chiplet Die** DIE3 DIE1 📰 📰 DIE2 📖

Chiplet electrical layer simulation

Electrical layer specifications

What is Chiplet

- A chiplet is an IC designed to be combined with other chiplets in a single package
- System on a single package rather than System on a Chip (SoC)
 - Avoiding one gigantic monolithic die by dividing it into several smaller dies and integrating them into a single package
 - Cost-effectiveness, power efficiency (lower picojoule/bit), improved thermal performance, higher yield, and faster development times
 - Similar to conventional SiP, SoP, PoP, PiP, etc., but with much higher-level integration based on advanced packaging technologies such as 3DIC and heterogeneous integration
- Multi-technology integration encompassing high-speed computing, RF, optics, etc
- · Foundry-driven integration and standardization activities, such as TSMC 3DFabric and

3DBlox, are significantly shaping the landscape

- · Wide reaching applications across various markets
 - Data centers and cloud computing
 - Telecommunications and networking
 - High performance computing (HPC)
 - Aerospace and defense
 - And more...

🚸 KEYSIGHT

Source: UCIe Consortium

Cost + Risk

Chiplets Improve the Cost vs. Performance of Chip Production

Monolithic approach 4 different functions in one big die

Fn: A	Fn: B
(CPU)	(Memory)
Fn: C	Fn: D
(I/O)	(Power)

Chiplet approach 4 different dies for 4 different functions

The Catch: Die-to-Die Communication is Important for Chiplets

Various standards for the die-to-die interface between chiplets

- UCIe (Universal Chiplet Interconnect express)
- BoW (Bunch of Wires)
- AIB (Advanced Interface Bus)

UCIe Module and Data Rates for Std Pkg. and Adv. Pkg.

KEYSIGHT

Chiplet Signal Integrity Simulation

Standard Package and Advance Package Comparison

PHY dimension depth is an informative parameter and depends on bump pitch.

KEYSIGHT

Signal Integrity Challenges

- Data is single-ended signal
- Handles different rising and falling edge rates for Single-Ended signals
- Rigorous statistical calculations for Data eye probabilities at arbitrarily low BER
- Check eye contours at target BER (<10⁻¹⁵ or <10⁻²⁷) against Data mask
- Account for crosstalk between all signal lines
- Measurements: Eye height, Eye width, Triggered Eye, contour, BER, VTF (Voltage Transfer Function), etc
- Single-end IBIS-AMI modeling and simulation

UCIe Clock

- Each module supports a two-phase forwarded clock.
- Per-Lane Deskew must be supported on the Transmitter at high data rates.
- The Receiver must provide matched delays between the Receiver clock distribution and Data/Valid Receiver path.
- Transmitter must support quadrature phases in addition to differential clock

Data rate (GT/s)	Clock freq. (fCK) (GHz)	Phase-1	Phase-2	Deskew (Req/Opt)	
32	16	90	270	Required	
52	8	45	135	Required	
24	12	90	270	Required	
24	6	45	135 Required		
16	8	90	270 Required		
12	6		270	Required	
8	4	90	270	Optional	
4	2	90	270	Optional	

Termination

- Advanced Package
 - Up to 2mm and 32Gb/s, TX drive control.
 - No RX Termination
- Standard Package
 - TX Termination
 - RX Termination Map

Voltage Transfer Function (VTF) Based Metrics

• Voltage Transfer Function (VTF) based metrics are used to define insertion loss and crosstalk.

Loss

• Loss is defined as the ratio of the receiver voltage and source voltage

 $L(f) = 20 \log_{10} |V_r(f)/V_s(f)|$ $L(0) = 20 \log_{10} \left(\frac{R_{rx}}{R_{tx} + R_{channel} + R_{rx}}\right)$

- *L*(0) is 0 for unterminated channel Crosstalk
- 19 aggressors included
- Crosstalk is defined as the power sum of the ratios of the aggressor receiver voltage to the source voltage
- Based on crosstalk reciprocity

$$XT(f) = 10 \log_{10} \left(\sum_{i=1}^{19} \left| \frac{V_{a_i}(f)}{V_s(f)} \right|^2 \right)$$

M KEYSIGHT

Tx AMI

- Transmitter equalization is recommended for 16 GT/s and must be supported at 24 GT/s and 32 GT/s data rates to mitigate the channel ISI impact.
- Tx equalization is de-emphasis only for all applicable Data rates.

|C₀|+|C₊₁|=1

V_{in}(n) = {0, +1)

 $De-emphasis = 20log_{10}(V_b/V_a)$

Setting	De-emphasis	Accuracy	C ₊₁	V _b /V _a
1	0.0 dB	-	0.000	1.000
2	-2.2 dB	+/- 0.5 dB	-0.112	0.776

Rx AMI

- Receiver equalization may be implemented at 24 GT/s and 32 GT/s data rates.
- Implementation can be CTLE, inductive peaking, 1-tap DFE, or others. Expected RX equalization capability is equivalent of 1st order CTLE.

$$H(s) = \omega_{p2} \left(\frac{s + A_{DC} \omega_{P1}}{(s + \omega_{p1})(s + \omega_{p2})} \right)$$

 $\omega_{p2} = 2\pi * DataRate$

 $\omega_{p1} = 2\pi * DataRate/4$

 $A_{DC} = DC Gain$

How to Simulate Chiplet?/

Std Pkg UCle Link Example with Signal Integrity Insights

Signal Integrity insights on

- Crosstalk
- Frequency-dependent loss
- Equalization

Chiplet Simulation

Smart Design Environment

Simulation Mode

Chiplet Simulation- Package Simulation

A sample design example with Standard Package

Chiplet Channel Simulation

Signal integrity metrics

• Tx Eye diagrams

Signal integrity metrics

- VTF loss
- VTF crosstalk

Signal integrity metrics

Rx Eye diagrams

Chiplet Simulation– Simulation Example for Eye, BER, Contour

Using Chiplet PHY Simulator with Bit-by-Bit Mode

Chiplet Simulation–VTF Simulation

Using AC Simulator with BatchSim

Case: Shorted the Length to Reduce Loss and Pass the Line

For the current material configuration, we can only afford a short-reach channel.

Chiplet Signal freqri(Ginz)ation

Key Attributes to a Chiplet D2D Comm. SI Analysis

Let the software work for you

Die-to-Die Interconnect Extraction and Modeling

Understand design space and validate design choices

Usability and Integration Don't work for the computer

Tx and Rx Termination and Equalization Explore possible design and solution space

Die-to-Die Channel Link

Identify problem early, reproduce existing problem

Summary Chiplet Simulation

Chiplet Package Die: A Die: B Die: C Die: D It is very important to analyze chiplets from D2D to D2D at a system level using smart design environment, it can help engineers find and solve problems as quickly as possible.

Supports differential **forwarded clock** in UCIe, BoW, AIB standard.

Standard Driven VTF Measurements

KEYSIGHT

Thank you

Chiplet Signal Integrity Simulation