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Introduction

• Increased data rates
o From 2003 to 2022, PCIe data rates have 

increased by 25x. 

• Increased design complexity
o Growth in the number of RX and TX 

equalization stages. 

o Increased number of TX cursor and 
ranges.

o Increased number of RX CTLE stages 
and DFE taps. 

• Increased channel validation time.
o Traditional exhaustive simulations 

become impractical, even with parallel 
processing.
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• A method is needed that will find the best equalization parameters for a given 
channel in a reasonable amount of time

• Optimization through machine learning will be integrated within the channel 
simulation environment

Introduction (continued)

• Transmitter Settings • Receiver Settings
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• Machine Learning:
o The use and development of computer systems that can learn and adapt without following 

explicit instructions, by using algorithms and statistical models to analyze and draw 
inferences from patterns in data.

• Optimization:
o An act, process, or methodology of making something (such as a design, system, or 

decision) as fully perfect, functional, or effective as possible.

• Goal: Apply a machine learning optimization algorithm that will optimize the 
equalization parameters to maximize/minimize an output from the simulation 
results.

• These class of ML algorithms are useful when the objective function is 
computationally expensive or time-consuming to evaluate.

Machine Learning for Optimization
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Machine Learning Optimization Process

1.  An initial random sampling is collected by applying random 
parameter values to the objective functions. 

2. The surrogate model is trained on the initial random sampling.

3. Create updated sets of test parameters.
 (Exploration vs. Exploitation trade off)

4. Evaluate the objective function based on the updated test parameters 
from the surrogate model.

5. Update the surrogate model based on the                                                              
latest samples of the objective function.

6. Repeat steps 3-5 until                                                                                               
a stopping criterion has been met.
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Optimization Needs
• Typical serial link simulations measurements:

o Eye height.

o Eye width.

o Eye jitter

o Channel Operating Margin (COM).

• These measurements (or some combination) can be 
used as an output that the ML optimization algorithm 
can optimize on.

• A disadvantage is that these measurements are zero if 
the eye is closed.

o When the outputs are mostly zero, the algorithm 
has no gradient to optimize on.

o This is not an issue if most/all the simulation 
results will likely have an open eye (i.e NRZ 
signaling).

o The issue is that PAMx simulations eye are closed 
for most simulation results.

• A measurement is needed that has a non-zero 
result when the simulated eye is closed.
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SNR as Objective Function

SNR examples
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IBIS-AMI Model 

• An IBIS-AMI model was created based on the 
OIF-CEI 112G-LR reference model

• TX:

o Three taps of pre cursor

o One tap of post cursor

• RX:

o Two CTLE stages

o 12 tap DFE (adaptive)
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IBIS-AMI model, CTLE stages
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• Three different channels used:
o Short (-7.5dB @ 28GHz)

o Medium (-16.8dB @ 28GHz)

o Long (-26.2dB @ 28GHz)

Simulation Setup
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Equalization Parameter Setup

• TX FFE Taps:
o Ranged float values

o Step size = 0.01

• RX CTLE settings:
o List of integer values

o Peaking increases with 
increased setting

• The absolute sum of the TX coefficients 
must be less than/equal to 0.5
o ABS(C(-3)) + ABS(C(-2))+ABS(C(-1))+ABS(C(+1))<=0.5

o 57,785 valid TX coefficient combinations

o For invalid TX coefficient combinations, all TX cursors values 
were set to 0.01

o This provides low SNR results to the optimization algorithm, 
preventing it from adapting towards invalid equalization 
settings

• Total Equalization 
Combinations:

7,685,405
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Objective Function Setup

• List of available measurements from the 
serial link simulation results

• From these measurements, an objective 
function is created

• This could be a single measurement, or a 
mathematical combination of the available 
measurements

• The negative of the middle SNR eye was 
chosen to be the Objective Goal Function

o The optimization algorithm is setup to 
find the minimal value of the objection 
function
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1. Based on the number of parameters to be optimized (6), 30 initial simulations 
were run with random parameter settings. The SNR of each simulation is 
recorded.

2. The surrogate model is trained on the SNR output from the initial set of 
simulations.

3. The surrogate model is then prepared for the next set of simulations.
 - Duplicate simulations are skipped to allow for more efficient simulations.
 - Exploration vs. Exploitation trade off

4. The results from the next set of simulation are used to update the surrogate 
model.

5. Steps 3 and 4 are repeated until no parameter sets are available, or if the total 
number of simulations has been reached (100 simulations).

Simulation Flow
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• A graph of the objective function (negative SNR) is plotted to show the 
convergence of the parameters.  Lower negative values are better.

• Most optimization runs showed minimal improvement through the first 30 
simulations.

• After this, the algorithm slowly trades off more exploitation simulations for fewer 
exploration simulations.

Simulation Result Example
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Results, Short

Mid_SNR = -171dB

CTLE_1 = 1

CTLE_2 =2

C(-3) =0.00

C(-2)=0.02

C(-1) =-0.13

C(+1) =-0.03
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Results, Medium

Mid_SNR = -81dB

CTLE_1 = 1

CTLE_2 =8

C(-3) =-0.02

C(-2)=0.06

C(-1) =-0.23

C(+1) =-0.03
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Results, Long

Mid_SNR = -43dB

CTLE_1 = 6

CTLE_2 =0

C(-3) =-0.00

C(-2)=0.05

C(-1) =-0.25

C(+1) =-0.15
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• The optimized parameters need to be validated that they are the best, or close 
to the best.

• An exhaustive search to verify is not practical.

• Assuming that the optimized parameters are close to the best, a local sweep of 
the parameters could be used to validate the results.

• The parameters from the medium channel test case was local swept to verify 
the optimized parameters.  Bold value are the values from optimization 
algorithm.

o C(-1) (-0.22, -0.23, -0.24)

o C(+1) (-0.02, -0.03, -0.04)

o CTLE stage 1 (0,1,2,3,4)

o CTLE stage 2 (6,7,8,9,10)

o C(-2), C(-3) were not swept.

Validation of Optimization Results
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• Blue box is the optimized 
results.

• White box is the highest 
SNR from the local sweep 
results.

• The algorithm results 
were very close to the 
local sweep results.

Medium Channel Validation

Optimized

SNR = 81dB

CTLE_1 = 1

CTLE_2 =8

C(-3) =-0.02

C(-2)=0.06

C(-1) =-0.23

C(+1) =-0.03

Local Sweep

SNR = 138dB

CTLE_1 = 1

CTLE_2 =6

C(-3) =-0.02

C(-2)=0.06

C(-1) =-0.24

C(+1) =-0.04
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• A machine learning algorithm was applied to the optimization of AMI parameters 
in a serial link simulation. 

• The results show that the algorithm was able to find good results for three 
different channels, indicating the robustness of the algorithm. 

• This method was able to find a good set of parameters in fewer simulations than 
if an exhaustive method had been deployed, saving the use of limited compute 
resources. 

• In most test cases, it was found that only 100 simulations were needed to find 
the best set of parameters.  Compare this to the over 7 million simulations for an 
exhaustive search.

Conclusions



© 2024 Cadence Design Systems, Inc. 22

• Jared James (jjames@cadence.com)

• Ambrish Varma(ambrishv@cadence.com)

More Information



https://www.cadence.com/go/trademarks 

© 2024 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at https://www.cadence.com/go/trademarks are trademarks or registered trademarks of 

Cadence Design Systems, Inc. Accellera and SystemC are trademarks of Accellera Systems Initiative Inc. All Arm products are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All 

MIPI specifications are registered trademarks or service marks owned by MIPI Alliance. All PCI-SIG specifications are registered trademarks or trademarks of PCI-SIG. All other trademarks are the property of their respective owners.

https://www.cadence.com/go/trademarks


© 2024 Cadence Design Systems, Inc. 24

Signal-to-Noise Ratio (SNR) Measurement

SNR=
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