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Introduction

* |ncreased data rates

- From 2003 to 2022, PCle data rates have
increased by 25x.

* Increased design complexity

o Growth in the number of RX and TX
equalization stages.

- Increased number of TX cursor and
ranges.

- Increased number of RX CTLE stages
and DFE taps.

* |Increased channel validation time.

- Traditional exhaustive simulations
become impractical, even with parallel
processing.

X RX Total
Combinations
Standard Data C(-3) | C(-2) | C(-1) | C(+1 1* gnd DFE
Rate CTLE CTLE Taps
PC Ie1 Gen 2 5Gb/s 3 3
P(.‘Ie2 Gen 5Gb/s 3 3
N ES
PC Ieg Gen 3Gb/s 7 9 7 1 273
N ES
PC Ie4Ge11 16Gb/s 7 9 7 2 273
- 11 A7 Q%
PC Iei Gen 32Gb/s 7 9 11 3 429
PC Ie6(3e11 64Gb/s 3 7 9 11 16 1.278
CEI- . 4 7 18 11 19 7 12 636.804%
}III . -
112G-1R 112Gb/s
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Introduction (continued)

* A method is needed that will find the best equalization parameters for a given
channel in a reasonable amount of time

« Optimization through machine learning will be integrated within the channel
simulation environment

+  Transmitter Settings : : « Receiver Settings
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Machine Learning for Optimization

Machine Learning:

- The use and development of computer systems that can learn and adapt without following
explicit instructions, by using algorithms and statistical models to analyze and draw
iInferences from patterns in data.

* Optimization:
- An act, process, or methodology of making something (such as a design, system, or
decision) as fully perfect, functional, or effective as possible.

« Goal: Apply a machine learning optimization algorithm that will optimize the
equalization parameters to maximize/minimize an output from the simulation
results.

» These class of ML algorithms are useful when the objective function is
computationally expensive or time-consuming to evaluate.
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Machine Learning Optimization Process

1.

An initial random sampling is collected by applying random

parameter values to the objective functions.
The surrogate model is trained on the initial random sampling.

Create updated sets of test parameters.

(Exploration vs. Exploitation trade off)

Evaluate the objective function based on the updated test parameters

from the surrogate model.

Update the surrogate model based on the

latest samples of the objective function.
Repeat steps 3-5 until

Optimization Algorithm

A 4

IBIS-AMI Simulator

Updated parameters

a stopping criterion has been met. i T——

-—. Channel

- Tx

FFE

RX parameters

Objective function

' y Eye Height
’ Eye Width

Eye Jitter
. COM

.~ Rx CTLE/DFE/CDR
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Optimization Needs

Typical serial link simulations measurements:
- Eye height.

- Eye width.
- Eye jitter
- Channel Operating Margin (COM).
These measurements (or some combination) can be

used as an output that the ML optimization algorithm
can optimize on.

A disadvantage is that these measurements are zero if
the eye is closed.

- When the outputs are mostly zero, the algorithm
has no gradient to optimize on.

- This is not an issue if most/all the simulation
results will likely have an open eye (i.e NRZ
signaling).

- The issue is that PAMx simulations eye are closed
for most simulation results.

A measurement is needed that has a non-zero
result when the simulated eye is closed.
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SNR as Objective Function

SNR examples

* SNR=20.3
[ ——— [ R——— ®

L3

cadence



IBIS-AMI Model

Transmitter equalizer, minimum cursor coefficient c(0) 0.50 —

Transmitter equalizer, 3rd pre-cursor coefficient c(-3)

Minimum value -0.06

Maximum value 0 =

Step size 0.02 =

Transmitter equalizer, 2nd pre-cursor coefficient c(-2)

Minimum value 0

Maximum value 0.12 —

Step size 0.02

Transmitter equalizer, 1st pre-cursor coefficient c(-1)

Minimum value —-0.34

Maximum value 0 —

Step size 0.02

Transmitter equalizer, post-cursor coefficient c(1)

Minimum value -0.2

Maximum value 0 —

Step size 0.02 =

Continuous time filter, DC gain doc

Minimum value -20 dB

Maximum value -2 dB

Step size 1 dB

Continuous time filter, DC gain2 doca

Minimum value -6 dB

Maximum value 0 dB

Step size I dB

Continuous time filter, scaled zero frequency f, /2.5 GHz

Continuous time filter, pole frequencies for /2.5 GHz
fp2 fb GHz

Continuous time filter, low frequency pole/scaled zero |f g f, /80 GHz

An IBIS-AMI model was created based on the
OIF-CEIl 112G-LR reference model

TX:
- Three taps of pre cursor

- One tap of post cursor
RX:

- Two CTLE stages

- 12 tap DFE (adaptive)
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IBIS-AMI model, CTLE stages
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Simulation Setup

* Three different channels used:
o Short (-7.5dB @ 28GHz)
- Medium (-16.8dB @ 28GHz)
- Long (-26.2dB @ 28GHz)
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Equalization Parameter Setup

Index Optimize Mame Type Expression Fef Value Unit BoundType LowBound HighBound Step List

1 CTLE_2 List relative 0,1,2,3,4,56,7.8910,11,12,13,14,15,16,17,18
2 CTLE_1 List relative 01,2345%6

3 (-3 Float -0.02 -0.02 absclute -0.06 0 0.1

4 C(-2) Float 0.02 0.02 absclute 0 012 0.01

3 C-13 Float -0.1 -0.1 absclute -0.34 0 0.01

B Ci+1) Float -0.1 -0.1 absolute -0.2 0 0.01

« TX FFE Taps:

- Ranged float values

- Stepsize =0.01
« RX CTLE settings:

o List of integer values

- Peaking increases with

increased setting

* The absolute sum of the TX coefficients

must be less than/equal to 0.5
ABS(C(-3)) + ABS(C(-2))+ABS(C(-1))+ABS(C(+1))<=0.5
57,785 valid TX coefficient combinations

o

(@]

o

- Total Equalization
Combinations:

For invalid TX coefficient combinations, all TX cursors values

were set to 0.01

This provides low SNR results to the optimization algorithm,

preventing it from adapting towards invalid equalization

settings

7,685,405
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Objective Function Setup

Function table

Name Expression Custom Function

* List of available measurements from the
serial link simulation results

owerkyeContourHeight Measurement

Contourlitter Measurement

ContourMJN Measurement ® From these measurements, an ObJeCtIVe

L
L
L
L Measurement
L
L
L

function is created

Measurement

iE e e « This could be a single measurement, or a
owerBER_EyeWickh Measurement mathematical combination of the available
MiddleEyeContourHeight Measurement
' ’ measurements

Measurement

Mot Measurement « The negative of the middle SNR eye was

o e chosen to be the Objective Goal Function

MiddleBER_EyeHeight Measurement @) The Opt|m|zat|0n algorlthm iS Setup to

T— find the minimal value of the objection
Measurement fu n Cti O n

UpperEyeContourlitter Measurement
UpperEyeContourMJN Measurement
UpperCOM Measurement
UpperSMR Measurement
UpperBER_EyeHeight Measurement

UpperBER_EyeWidth Measurement

Mid_SMR -1 * MiddleSMR Objective Function(goal)
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Simulation Flow

1. Based on the number of parameters to be optimized (6), 30 initial simulations
were run with random parameter settings. The SNR of each simulation is
recorded.

2. The surrogate model is trained on the SNR output from the Initial set of
simulations.

3. The surrogate model is then prepared for the next set of simulations.
- Duplicate simulations are skipped to allow for more efficient simulations.
- Exploration vs. Exploitation trade off

4. The results from the next set of simulation are used to update the surrogate
model.

5. Steps 3 and 4 are repeated until no parameter sets are available, or if the total
number of simulations has been reached (100 simulations).
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Simulation Result Example

* A graph of the objective function (negative SNR) is plotted to show the
convergence of the parameters. Lower negative values are better.

* Most optimization runs showed minimal improvement through the first 30
simulations.

- After this, the algorithm slowly trades off more exploitation simulations for fewer
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Results, Short

Mid_SNR = -171dB
CTLE 1=1
CTLE 2 =2

C(-3) =0.00
C(-2)=0.02

C(-1) =-0.13

C(+1) =-0.03
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Results, Medium

Mid_SNR = -81dB
CTLE 1=1
CTLE_2=8

C(-3) =-0.02
C(-2)=0.06

C(-1) =-0.23
C(+1) =-0.03
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Results, Long

Mid_SNR = -43dB
CTLE 1=6
CTLE_2 =0

C(-3) =-0.00
C(-2)=0.05

C(-1) =-0.25
C(+1) =-0.15
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Validation of Optimization Results

* The optimized parameters need to be validated that they are the best, or close
to the best.

« An exhaustive search to verify is not practical.

« Assuming that the optimized parameters are close to the best, a local sweep of
the parameters could be used to validate the results.

* The parameters from the medium channel test case was local swept to verify
the optimized parameters. Bold value are the values from optimization
algorithm.

- C(-1) (-0.22, -0.23, -0.24)

- C(+1) (-0.02, -0.03, -0.04)

- CTLE stage 1 (0,1,2,3,4)

- CTLE stage 2 (6,7,8,9,10)

- C(-2), C(-3) were not swept.
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Medium Channel Validation

* Blue box is the optimized

results.

[:0.22,-0.02] [:0.22,-0.03] [:0.22,-0.04]
] . . 712 646 o 843 739
- White box is the highest - - @ mr
w'a 67.3 639 we 728 723
SNR from the local sweef © s 562 om0 s
” 505  50.1 <« [sse s .
resu ItS . 6 7 CTE_Z 9 10 6 7 CTE_z 9 10 6 7 CTE_Z 9 10
[:0.23,-0.02] (023009 [:0.23,-0.04]
 The algorithm results - i - N - KX
'~ 906 822 707 87.7 '~ 11084 1008 692 |
were very close to the b e

local sweep results. < w1 @0 | 812 e s gEE
p ° ! CTE_Z ! CTE_2 ° " ° ! CTE_Z
Optimized Local Sweep N e £0.24.0.03] 026000

SNR =81dB  SNR = 138dB - 53 -
w'e 82.2 [ 48.8 87.2 wo [0 81.0

CTLE_l =1 CTLE_l =1 o 985 932 69.0 975 725 © 920 987 643
< 784 793 639 803 835 587 <« 828 798 | 562

CTLE_2=8
C(-3) =-0.02
C(-2)=0.06
C(-1) =-0.23
C(+1) =-0.03

CTLE_2 =6
C(-3) =-0.02
C(-2)=0.06
C(-1) =-0.24
C(+1) =-0.04

6 7 8 9 10 6 74 8 6 7 8 9 10
CTE_2 CTE_2 CTE_2
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Conclusions

« A machine learning algorithm was applied to the optimization of AMI parameters
In a serial link simulation.

« The results show that the algorithm was able to find good results for three
different channels, indicating the robustness of the algorithm.

« This method was able to find a good set of parameters in fewer simulations than
If an exhaustive method had been deployed, saving the use of limited compute
resources.

* In most test cases, it was found that only 100 simulations were needed to find
the best set of parameters. Compare this to the over 7 million simulations for an
exhaustive search.
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More Information
« Jared James (jjames@cadence.com)

« Ambrish Varma(ambrishv@cadence.com)

Optimization Algorithm

Surrogate
Model
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M ./
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Updated parameters

IBIS-AMI Simulator
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Signal-to-Noise Ratio (SNR) Measurement

Eye
Height

<

.

Eye

Amplitude FLoREN

SNR=

(one level — zero level)

(10 [one level] + 16 [zero level])

cadence



	Slide 1: The Optimization of IBIS-AMI Model Parameters with Machine Learning Algorithms
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Introduction (continued)
	Slide 5: Machine Learning for Optimization
	Slide 6: Machine Learning Optimization Process
	Slide 7: Optimization Needs
	Slide 8: SNR as Objective Function
	Slide 9: IBIS-AMI Model 
	Slide 10: IBIS-AMI model, CTLE stages
	Slide 11: Simulation Setup
	Slide 12: Equalization Parameter Setup
	Slide 13: Objective Function Setup
	Slide 14: Simulation Flow
	Slide 15: Simulation Result Example
	Slide 16: Results, Short
	Slide 17: Results, Medium
	Slide 18: Results, Long
	Slide 19: Validation of Optimization Results
	Slide 20: Medium Channel Validation
	Slide 21: Conclusions
	Slide 22: More Information
	Slide 23
	Slide 24: Signal-to-Noise Ratio (SNR) Measurement

