IBIS AMI Model Developers Toolbox

Hemant Shah (shah@cadence.com)
IBIS Summit - Tokyo, Japan
September 14, 2007
Interoperability with < 6Gbps SERDES devices

- PCB Design & Simulation env from EDA companies
 - Simulators need models
 - Models come from IC Companies
- Design Environment managed by EDA companies
- End users happy with Interoperability
Interoperability with > 6Gbps SERDES devices

- SERDES Devices that operate at 6+ Gbps can’t be modeled with current modeling standards in PCB SI space
 - FFE/DFE tap coefficient optimization
 - CDR algorithms
 - proprietary noise cancellation techniques and post-processing of data

- IC companies
 1. Forced to develop, distribute and support internal tools to model SERDES IP / IO
 2. Must protect IP

- Systems Companies
 3. Have to learn different tools from different IC companies
 4. Want interoperability
Algorithmic Modeling
Proposed Architecture & Flow

• Operate on “traditional” CA waveform output with additional algorithms
 – SERDES transmitter, receiver models as DLL
• Provide framework for customers to evaluate IP in PCB system environment that offers interoperability with other drivers/receivers
Integration with PCB Design Environment

Channel (Pkg + conn + PCBs + Backplane)

Tx + Rx

channel

Xtalk channel

Xtalk channel

Tx + Rx + Channel =

yecto
cadence
Simple API

- **Init**
 - Initialize and optimize channel with Tx / Rx Model
 - This is where the IC DSP decides how to drive the system: e.g., filter coefficients, channel compensation, …
 - Input: Channel Characterization, system and dll specific parameters from config file
 - bit period, sampling intervals, # of forward/backward coefficients, …
 - Output: Modified Channel Characterization, status

- **GetWave**
 - Modify continuous time domain waveform [CDR, Post Processing]
 - Input: Voltage at Rx input at specific times
 - Output: Modified Voltage, Clock tics, status

- **Close**
 - Clean up, exit

Parameters passed by the system simulation platform are in red
AMI_init

EDA Platform

Pass characterization

DSP algorithms modify characterization

Modified characterization

Internal storage

Model
What’s in it

• Sample Model Rx
 – Source code
 – Executable on Linux
 – Model params file

• Tester Program
 – Executable on Linux
 – Tester config file

• Starter model templates

• Documentation

• Use sample model and tester program to understand the details of the IBIS AMI API

• Create your own algorithmic models using starter model templates

• Use the tester program to test the model
Sample Rx Model

- Continuous Time Filter (CTF) RX model
 - Combination of feed forward and feed backward filter
 - Modifies the waveform given a set of coefficients
 - Tested for 6.25Gbps data rate
 - User configurable forward and backward taps

- Parameters needed by the model
 - Number of forward taps, Number of backward taps, Coefficients
 - Can be provided in a file

- To Compile:
 a) gcc -c ibis_ctf_rx.c
 b) gcc -shared -o ibis_ctf_rx.dll ibis_ctf_rx.o
CDNS AMI Tester Program

• Inputs
 – Bit Stream: “(0111100001111)”
 • Alternatively, users can specify the number of bits and let tester generate random bits
 – Data Rate
 – Impulse Response
 – DLL to interface to
 – Model specific parameters

• Outputs
 – Wave_out: *voltage-time pairs in txt file*
 waveform data modified by the Model
 – Wave_in: *voltage-time pairs in txt file*
 Represents waveform passed to the model
 – ImpulseResponse: IR data if it is modified by the model (init)
CDNS AMI Tester Program

- Usage:
 CDNS_TESTER [-h] ctf_rx_model

AMI File contains:
- Measurement Delay
- Ignore data for spec delay
- Model specific parameters

Tester config file contains:
- Information generally set by end users through the EDA platform
 - Data Rate
 - Number of bits
 - Input file names
 - Output files names
How to get the kit

- Cadence AMI Developers toolbox will be available through IBIS web site soon

- In the mean time, you can send request for the toolbox to: shah@cadence.com
Resources

• Many presentations on Algorithmic Modeling starting from June 2006 can be found at:
 http://www.vhdl.org/pub/ibis/macromodel_wip/archive-date.html

• Updates on the AMI work can also be found in ATM subcommittee updates provided at DAC 2007 and DesignCon 2007 IBIS Summits
 – Presentations can be accessed from this page:
 http://www.vhdl.org/pub/ibis/summits/

• To reach the IBIS-ATM group on this topic, you can send email to: ibis-ami-toolkit@freelists.org